830 resultados para Internet-of-Things, Wireless Sensor Network, CoAP
Resumo:
In the last years there has been a clear evolution in the world of telecommunications, which goes from new services that need higher speeds and higher bandwidth, until a role of interactions between people and machines, named by Internet of Things (IoT). So, the only technology able to follow this growth is the optical communications. Currently the solution that enables to overcome the day-by-day needs, like collaborative job, audio and video communications and share of les is based on Gigabit-capable Passive Optical Network (G-PON) with the recently successor named Next Generation Passive Optical Network Phase 2 (NG-PON2). This technology is based on the multiplexing domain wavelength and due to its characteristics and performance becomes the more advantageous technology. A major focus of optical communications are Photonic Integrated Circuits (PICs). These can include various components into a single device, which simpli es the design of the optical system, reducing space and power consumption, and improves reliability. These characteristics make this type of devices useful for several applications, that justi es the investments in the development of the technology into a very high level of performance and reliability in terms of the building blocks. With the goal to develop the optical networks of future generations, this work presents the design and implementation of a PIC, which is intended to be a universal transceiver for applications for NG-PON2. The same PIC will be able to be used as an Optical Line Terminal (OLT) or an Optical Network Unit (ONU) and in both cases as transmitter and receiver. Initially a study is made of Passive Optical Network (PON) and its standards. Therefore it is done a theoretical overview that explores the materials used in the development and production of this PIC, which foundries are available, and focusing in SMART Photonics, the components used in the development of this chip. For the conceptualization of the project di erent architectures are designed and part of the laser cavity is simulated using Aspic™. Through the analysis of advantages and disadvantages of each one, it is chosen the best to be used in the implementation. Moreover, the architecture of the transceiver is simulated block by block through the VPItransmissionMaker™ and it is demonstrated its operating principle. Finally it is presented the PIC implementation.
Resumo:
The continuous flow of technological developments in communications and electronic industries has led to the growing expansion of the Internet of Things (IoT). By leveraging the capabilities of smart networked devices and integrating them into existing industrial, leisure and communication applications, the IoT is expected to positively impact both economy and society, reducing the gap between the physical and digital worlds. Therefore, several efforts have been dedicated to the development of networking solutions addressing the diversity of challenges associated with such a vision. In this context, the integration of Information Centric Networking (ICN) concepts into the core of IoT is a research area gaining momentum and involving both research and industry actors. The massive amount of heterogeneous devices, as well as the data they produce, is a significant challenge for a wide-scale adoption of the IoT. In this paper we propose a service discovery mechanism, based on Named Data Networking (NDN), that leverages the use of a semantic matching mechanism for achieving a flexible discovery process. The development of appropriate service discovery mechanisms enriched with semantic capabilities for understanding and processing context information is a key feature for turning raw data into useful knowledge and ensuring the interoperability among different devices and applications. We assessed the performance of our solution through the implementation and deployment of a proof-of-concept prototype. Obtained results illustrate the potential of integrating semantic and ICN mechanisms to enable a flexible service discovery in IoT scenarios.
Resumo:
Recent years have seen an astronomical rise in SQL Injection Attacks (SQLIAs) used to compromise the confidentiality, authentication and integrity of organisations’ databases. Intruders becoming smarter in obfuscating web requests to evade detection combined with increasing volumes of web traffic from the Internet of Things (IoT), cloud-hosted and on-premise business applications have made it evident that the existing approaches of mostly static signature lack the ability to cope with novel signatures. A SQLIA detection and prevention solution can be achieved through exploring an alternative bio-inspired supervised learning approach that uses input of labelled dataset of numerical attributes in classifying true positives and negatives. We present in this paper a Numerical Encoding to Tame SQLIA (NETSQLIA) that implements a proof of concept for scalable numerical encoding of features to a dataset attributes with labelled class obtained from deep web traffic analysis. In the numerical attributes encoding: the model leverages proxy in the interception and decryption of web traffic. The intercepted web requests are then assembled for front-end SQL parsing and pattern matching by applying traditional Non-Deterministic Finite Automaton (NFA). This paper is intended for a technique of numerical attributes extraction of any size primed as an input dataset to an Artificial Neural Network (ANN) and statistical Machine Learning (ML) algorithms implemented using Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic Regression (TCLR) respectively. This methodology then forms the subject of the empirical evaluation of the suitability of this model in the accurate classification of both legitimate web requests and SQLIA payloads.
Resumo:
En la acuicultura, la producción de camarón depende de parámetros ambientales, y químicos en el agua. Usualmente, la medición y compilación de datos acerca de estos parámetros se realiza manualmente. En este trabajo se propone y evalúa una red de sensores cuyos nodos se interconectan inalámbricamente para recolectar datos automáticamente. El diseño de la red explota la topología de malla, misma que permite incrementar la fiabilidad en la transmisión de datos. Adicionalmente, los módulos de hardware utilizados se configuran para reducir el consumo de energía. Se realizaron pruebas en entornos reales (tanques y piscinas) con varios nodos colocados en plataformas flotantes para capturar, transmitir y acumular datos relativos a temperatura del agua. Los resultados obtenidos son alentadores y demuestran las posibilidades que existen para explotar componentes electrónicos de bajo costo en aplicaciones de acuicultura inteligente.
Resumo:
The increasing dependency of everyday life on mobile devices also increases the number and complexity of computing tasks to be supported by these devices. However, the inherent requirement of mobility restricts them from being resources rich both in terms of energy (battery capacity) and other computing resources such as processing capacity, memory and other resources. This thesis looks into cyber foraging technique of offloading computing tasks. Various experiments on android mobile devices are carried out to evaluate offloading benefits in terms of sustainability advantage, prolonging battery life and augmenting the performance of mobile devices. This thesis considers two scenarios of cyber foraging namely opportunistic offloading and competitive offloading. These results show that the offloading scenarios are important for both green computing and resource augmentation of mobile devices. A significant advantage in battery life gain and performance enhancement is obtained. Moreover, cyber foraging is proved to be efficient in minimizing energy consumption per computing tasks. The work is based on scavenger cyber foraging system. In addition, the work can be used as a basis for studying cyber foraging and other similar approaches such as mobile cloud/edge computing for internet of things devices and improving the user experiences of applications by minimizing latencies through the use of potential nearby surrogates.
Resumo:
Abstract One of the most important challenges of this decade is the Internet of Things (IoT) that pursues the integration of real-world objects in Internet. One of the key areas of the IoT is the Ambient Assisted Living (AAL) systems, which should be able to react to variable and continuous changes while ensuring their acceptance and adoption by users. This means that AAL systems need to work as self-adaptive systems. The autonomy property inherent to software agents, makes them a suitable choice for developing self-adaptive systems. However, agents lack the mechanisms to deal with the variability present in the IoT domain with regard to devices and network technologies. To overcome this limitation we have already proposed a Software Product Line (SPL) process for the development of self-adaptive agents in the IoT. Here we analyze the challenges that poses the development of self-adaptive AAL systems based on agents. To do so, we focus on the domain and application engineering of the self-adaptation concern of our SPL process. In addition, we provide a validation of our development process for AAL systems.
Resumo:
As the interest in the Web of Things increases, specially for the general population, the barriers to entry for the use of these technologies should decrease. Current applications can be developed to adapt their behaviour to predefined conditions and users preferences, facilitating their use. In the future,Web of Things software should be able to automatically adjust its behaviour to non-predefined preferences or context of its users. In this vision paper we define the Situational-Context as the combination of the virtual profiles of the entities (things or people) that concur at a particular place and time. The computation of the Situational-Context allow us to predict the expected system behaviour and the required interaction between devices to meet the entities’ goals, achieving a better adjustment of the system to variable contexts.
Resumo:
Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2011
Resumo:
The Wireless Sensor Networks (WSN) methods applied to the lifting of oil present as an area with growing demand technical and scientific in view of the optimizations that can be carried forward with existing processes. This dissertation has as main objective to present the development of embedded systems dedicated to a wireless sensor network based on IEEE 802.15.4, which applies the ZigBee protocol, between sensors, actuators and the PLC (Programmable Logic Controller), aiming to solve the present problems in the deployment and maintenance of the physical communication of current elevation oil units based on the method Plunger-Lift. Embedded systems developed for this application will be responsible for acquiring information from sensors and control actuators of the devices present at the well, and also, using the Modbus protocol to make this network becomes transparent to the PLC responsible for controlling the production and delivery information for supervisory SISAL
Resumo:
Vapor sensors have been used for many years. Their applications range from detection of toxic gases and dangerous chemicals in industrial environments, the monitoring of landmines and other explosives, to the monitoring of atmospheric conditions. Microelectrical mechanical systems (MEMS) fabrication technologies provide a way to fabricate sensitive devices. One type of MEMS vapor sensors is based on mass changing detection and the sensors have a functional chemical coating for absorbing the chemical vapor of interest. The principle of the resonant mass sensor is that the resonant frequency will experience a large change due to a small mass of gas vapor change. This thesis is trying to build analytical micro-cantilever and micro-tilting plate models, which can make optimization more efficient. Several objectives need to be accomplished: (1) Build an analytical model of MEMS resonant mass sensor based on micro-tilting plate with the effects of air damping. (2) Perform design optimization of micro-tilting plate with a hole in the center. (3) Build an analytical model of MEMS resonant mass sensor based on micro-cantilever with the effects of air damping. (4) Perform design optimization of micro-cantilever by COMSOL. Analytical models of micro-tilting plate with a hole in the center are compared with a COMSOL simulation model and show good agreement. The analytical models have been used to do design optimization that maximizes sensitivity. The micro-cantilever analytical model does not show good agreement with a COMSOL simulation model. To further investigate, the air damping pressures at several points on the micro-cantilever have been compared between analytical model and COMSOL model. The analytical model is inadequate for two reasons. First, the model’s boundary condition assumption is not realistic. Second, the deflection shape of the cantilever changes with the hole size, and the model does not account for this. Design optimization of micro-cantilever is done by COMSOL.
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.
Resumo:
Grazie all'evoluzione dei servizi di rete indirizzare le interfacce di rete come se fossero i veri destinatari delle comunicazioni è diventato obsoleto. Per questo è nato il concetto di Internet of Threads, in cui gli indirizzi IP sono assegnati ad ogni processo in esecuzione nel computer mediante una rete ethernet virtuale. Attualmente esistono progetti che forniscono la gestione della rete virtuale e librerie che forniscono lo stack TCP/IP da integrare all'interno dei propri programmi. Queste librerie richiedono però la modifica e ricompilazione del proprio codice, anche a causa della loro interfaccia differente dai Berkeley Socket. Attraverso PycoTCP è possibile sperimentare all'interno di un ambiente IoTh senza riscrivere il proprio codice. Inoltre unifica le API fornite dalle librerie sottostanti esponendo una interfaccia identica a quella standard del Python, in modo che non sia necessario imparare un altro metodo di programmazione per utilizzare il nuovo paradigma.
Resumo:
The Internet of Things is a technological innovation, based on artifacts and consolidated concepts like Internet and Smart Objects. Its growing business application of Internet of Things makes necessary to evaluate the strategy, benefits and challenges of this technology application. The main objective of this paper is to present the definition of Internet of Things, based on the most cited articles and as a secondary objective, present publication statistics classified by year and related terms, like ubiquitous computation. One of the conclusions is that papers related to business represent only 5% of all the papers analyzed by this research, considering just the papers published on journals. It shows that there is a great field to research on Business Administration.
Resumo:
This thesis is devoted to studying two historical philosophical events that happened in the West and the East. A metaphysical crisis stimulated Kant’s writings during his late critical period towards the notion of the supersensible. It further motivated a methodological shift and his coining of reflective judgment, which eventually brought about a systemic unfolding of his critical philosophy via Kantian moral teleology. Zhu Xi and his Neo-Confucian contemporaries confronted a transformed intellectual landscape resulting from the Neo-Daoist and Buddhist discourses of “what is beyond the form”. The revival of Confucianism required a method in order to relocate the formless Dao back into daily life and to reconstruct a meta-ethical foundation within a social context. This led to the Neo-Confucian recasting of “investigation of things” from The Great Learning via complex hermeneutic operations. By the respective investigation on, as well as the comparative analysis of the two events, I reveal the convergence and incommensurability between the two distinct cultural traditions concerning the metaphysical quests, the mechanism of intellectual development, and moral teleology, so as to capture the intrinsic characteristics of philosophical research in general.
Resumo:
In this paper, a smart wireless wristband is proposed. The potential of innovative gesture based interactivity with connected lighting solutions is reviewed. The solution is intended to offer numerous benefits, in terms of ease of use, and enhanced dynamic interactive functionality. A comparative analysis will be carried out between this work and existing solutions. The evolution of lighting and gesture controls will be discussed and an overview of alternative applications will be provided, as part of the critical analysis.