1000 resultados para Interactions protéiques
Resumo:
Supersonic engine intakes operating supercritically feature shock wave / boundary layer interactions (SBLIs), which are conventionally controlled using boundary layer bleed. The momentum loss of bleed flow causes high drag, compromising intake performance. Micro-ramp sub-boundary layer vortex generators (SBVGs) have been proposed as an alternative form of flow control for oblique SBLIs in order to reduce the bleed requirement. Experiments have been conducted at Mach 2.5 to characterise the flow details on such devices and investigate their ability to control the interaction between an oblique shock wave and the naturally grown turbulent boundary layer on the tunnel floor. Micro-ramps of four sizes with heights ranging from 25% to 75% of the uncontrolled boundary layer thickness were tested. The flow over all sizes of microramp was found to be similar, featuring streamwise counter-rotating vortices which entrain high momentum fluid, locally reducing the boundary layer displacement thickness. When installed ahead of the shock interaction it was found that the positioning of the micro-ramps is of limited importance. Micro-ramps did not eliminate flow separation. However, the previously two-dimensional separation was broken up into periodic three-dimensional separation zones. The interaction length was reduced and the pressure gradient across the interaction was increased.
Resumo:
In this paper, the effects of wake/leading-edge interactions were studied at off-design conditions. Measurements were performed on the stator-blade suction surface at midspan. The leading-edge flow-field was investigated using hotwire micro-traverses, hotfilm surface shear-stress sensors and pressure micro-tappings. The trailing-edge flow-field was investigated using hotwire boundary-layer traverses. Unsteady CFD calculations were also performed to aid the interpretation of the results. At low flow coefficients, the time-averaged momentum thickness of the leading-edge boundary layer was found to rise as the flow coefficient was reduced. The time-resolved momentum-thickness rose due to the interaction of the incoming rotor wake. As the flow coefficient was reduced, the incoming wakes increased in pitch-wise extent, velocity deficit and turbulence intensity. This increased both the time-resolved rise in the momentum thickness and the turbulent spot production within the wake affected boundary-layer. Close to stall, a drop in the leading-edge momentum thickness was observed in-between wake events. This was associated with the formation of a leading-edge separation bubble in-between wake events. The wake interaction with the bubble gave rise to a shedding phenomenon, which produced large length scale disturbances in the surface shear stress. Copyright © 2008 by ASME.
Resumo:
An experimental investigation into the response of transonic SBLIs to periodic down-stream pressure perturbations in a parallel walled duct has been conducted. Tests have been carried out with a shock strength of M ∞ = 1.5 for pressure perturbation frequencies in the range 16-90 Hz. Analysis of the steady interaction at M∞ = 1.5 has also been made. The principle measurement techniques were high speed schlieren photography and laser Doppler anemometry. The structure of the steady SBLI was found to be highly three-dimensional, with large corner flows and sidewall SBLIs. These aspects are thought to influence the upstream transmission of pressure information through the interaction by affecting the post-shock flow field, including the extent of regions of secondary supersonic flow. At low frequency, the dynamics of shock motion can be predicted using an inviscid analytical model. At increased frequencies, viscous effects become significant and the shock exhibits unexpected dynamic behaviour, due to a phase lag between the upstream transmission of pressure information in the core flow and in the viscous boundary layers. Flow control in the form of micro-vane vortex generators was found to have a small impact on shock dynamics, due to the effect it had on the post-shock flow field outside the viscous boundary layer region. The relationship between inviscid and viscous effects is developed and potential destabilising mechanisms for SBLIs in practical applications are suggested. Copyright © 2009 by Paul Bruce and Holger Babinsky.
Resumo:
Experiments were conducted investigating the interaction between a normal shock wave and a corner boundary layer in a constant area rectangular duct. Active corner suction and passive blowing were applied to manipulate the natural corner flows developing in the working section of the Cambridge University supersonic wind tunnel. In addition robust vane micro-vortex generators were applied to the corners of the working section. Experiments were conducted at Mach numbers of M∞=1.4 and 1.5. Flow visualisation was carried out through schlieren and surface oil flow, while static pressures were recorded via floor tappings. The results indicate that an interplay occurs between the corner flow and the centre line flow. It is believed that corner flow separation acts to induce a shock bifurcation, which in turn leads to a smearing of the adverse pressure gradient elsewhere. In addition the blockage effect from the corners was seen to result in a reacceleration of the subsonic post-shock flow. As a result manipulation of the corner regions allows a separated or attached centre line flow to be observed at the same Mach number. Copyright © 2010 by Babinsky, Burton, Bruce.
Resumo:
To address future uncertainty within strategy and innovation, managers extrapolate past patterns and trends into the future. Several disciplines make use of lifecycles, often with a linear sequence of identified phases, to make predictions and address likely uncertainties. Often the aggregation of several cycles is then interpreted as a new cycle - such as product lifecycles into an industry lifecycle. However, frequently different lifecycle terms - technology, product, industry - are used interchangeably and without clear definition. Within the interdisciplinary context of technology management, this juxtaposition of dynamics can create confusion, rather than clarification. This paper explores some typical dynamics associated with technology-based industries, using illustrative examples from the automotive industry. A wide range of dimensions are seen to influence the path of a technology-based industry, and stakeholders need to consider the likely causality and synchronicity of these. Some curves can simply present the aggregation of components; other dynamics incur time lags, rather than being superimposed, but still have a significant impact. To optimise alignment of the important dimensions within any development, and for future strategy decisions, understanding these interactions will be critical. © 2011 IEEE.
Resumo:
Most of the literature on the role of universities in innovation assumes that academics¡¯ knowledge interacts only with industry and knowledge transfer occurs only or mainly in the technological and scientific fields. We question these assumptions, suggesting academics¡¯ internal and external knowledge interact across disciplines. Using national survey data, this paper tries to show the heterogeneity of university teachers¡¯ knowledge interactions across wider disciplines. Also, this paper explores the patterns of university academics¡¯ internal knowledge interactions with other academics within academia and the university academics¡¯ external knowledge interactions with industry, such as small and medium enterprises (SMEs) and major Korean firms, Chaebols. We found that there are heterogeneities of academics¡¯ knowledge interactions across the disciplines.
Resumo:
A 3x3 factorial experiment was conducted to determine the optimum protein to energy (P/E) ratio for rainbow trout in brackish water. Three crud protein levels and three energy levels at each protein level were utilized. Diets were made in semi-purified that in all of them fish meal, casein and gelatin as the sources of protein and dextrin, starch and oil as the sources of energy were used. Each of experimental diets was fed to triplicate groups of 20 fish with an average individual weight of 81.5 g in 9 2000-1 flow trough fiberglass tanks. During this experiment water temperature, dissolved oxygen, PH and EC were 15±2°C, 6.5-8.1 mg/1, 7.7-8.6 and 25400 grills respectively. The diets were fed at a rate between 1.6-2 wet body weight% per day depended to water temperature in three equal rations and adjusted two weekly for 84 days. At each of protein levels, weight gain percent (%WG), average daily growth percent (%ADG), protein efficiency ratio (PER), apparent net protein utilization percent (%ANPU), or percent of protein deposited, specific growth rate (SGR) and condition factor (CF) were found to increase and food conversion ratio (FCR) was found to decrease with an increasing energy levels from 370 to 430 Kcal/100g. Fish fed a 35% protein, 430 Kcal/100g energy diet with a P/E ratio of 81.4 mg protein/ Kcal PFV energy, attained the best growth performance. Fat and moisture of carcass were affected by protein and energy levels of test diets while protein and ash of carcass were relatively constant in different treatments.
Resumo:
BIPV (building integrated photovoltaics) has progressed in the past years and become an element to be considered in city planning. BIPV has significant influence on microclimate in urban environments and the performance of BIPV is also affected by urban climate. The thermal model and electrical performance model of ventilated BIPV are combined to predict PV temperature and PV power output in Tianjin, China. Then, by using dynamic building energy model, the building cooling load for installing BIPV is calculated. A multi-layer model AUSSSM of urban canopy layer is used to assess the effect of BIPV on the Urban Heat Island (UHI). The simulation results show that in comparison with the conventional roof, the total building cooling load with ventilation PV roof may be decreased by 10%. The UHI effect after using BIPV relies on the surface absorptivity of original building. In this case, the daily total PV electricity output in urban areas may be reduced by 13% compared with the suburban areas due to UHI and solar radiation attenuation because of urban air pollution. The calculation results reveal that it is necessary to pay attention to and further analyze interactions between BIPV and microdimate in urban environments to decrease urban pollution, improve BIPV performance and reduce cooling load. Copyright © 2006 by ASME.
Resumo:
BIPV(Building Integrated Photovoltaics) has progressed in the past years and become an element to be considered in city planning. BIPV has influence on microclimate in urban environments and the performance of BIPV is also affected by urban climate. The effect of BIPV on urban microclimate can be summarized under the following four aspects. The change of absorptivity and emissivity from original building surface to PV will change urban radiation balance. After installation of PV, building cooling load will be reduced because of PV shading effect, so urban anthropogenic heat also decreases to some extent. Because PV can reduce carbon dioxide emissions which is one of the reasons for urban heat island, BIPV is useful to mitigate this phenomena. The anthropogenic heat will alter after using BIPV, because partial replacement of fossil fuel means to change sensible heat from fossil fuel to solar energy. Different urban microclimate may have various effects on BIPV performance that can be analyzed from two perspectives. Firstly, BIPV performance may decline with the increase of air temperature in densely built areas because many factors in urban areas cause higher temperature than that of the surrounding countryside. Secondly, the change of solar irradiance at the ground level under urban air pollution will lead to the variation of BIPV performance because total solar irradiance usually is reduced and each solar cell has a different spectral response characteristic. The thermal model and performance model of ventilated BIPV according to actual meteorologic data in Tianjin(China) are combined to predict PV temperature and power output in the city of Tianjin. Then, using dynamic building energy model, cooling load is calculated after BIPV installation. The calculation made based in Tianjin shows that it is necessary to pay attention to and further analyze interaction between them to decrease urban pollution, improve BIPV Performance and reduce colling load. Copyright © 2005 by ASME.
Resumo:
Event-sampling and scans were used for collecting data on male-infant-male triadic interactions, and their effects on member spacing respectively in a group of Macaca thibetana at Mt. Emei in 1989. The group was partially provisioned by human visitors in seasons other than winter, and could be observed closely. In addition, a stable linear male-hierarchy among five males existed for two years since the end of 1987, providing a good social condition for this topic. The triadic interactions were specific to the birth season, and recognized as three types being on a continuum functionally changing from passive ''agonistic buffering'' (4.8%) to active spatial cohesion, which resulted in a significant decline of intermale distances. Positive correlations were documented between the triad initiation rate and the number of females in consort with the males in the mating season (MS), and between the triad reception rate and the number of infants in proximity to the males in the MS when maternal care was significantly reduced. Thus the male's mating effort and kin/sexual selection may deeply be involved in the triad of this species. Considering that the two triad-species, M. sylvanus and M. thibetana, had different levels of paternity, but shared similar foraging conditions, and showed similar intensities of male-infant caretaking, the triad was very likely a byproduct of male-infant caretaking, which was probably shaped to compensate heavy maternal investment to young offspring in harsh conditions. Accordingly, the long-term arguments about the triad in M. sylvanus can be united to a model of the way in which ''male-infant caretaking'' hypothesis works ultimately, and ''regulating social relations'' hypothesis does proximately.
Resumo:
Data on intergroup-interactions (I-I) were collected in 5 seasonally provisioned groups (A, B, D, D-1, and E) of Tibetan macaques (Macaca Thibetana) at Mt. Emei in three 70-day periods between 1991 April-June (P1), September-November (P2), December-1992 February (P3). The I-I were categorized as forewarning made by high-ranking males (including Branch Shaking and/or Loud Calls), long-distance interactions in space (specified by changes in their foraging movements), and close encounters (with Affinitive Behavior, Male's Herding Female, Sexual Interaction, Severe Conflict, Adult Male-male Conflict, Opportunistic Advance and Retreat, etc. performed by different age-sex classes). From periods Fl to P3, the I-I rate decreased with reduction in population density as a positive correlate of food clumpedness or the number of potential feeders along a pedestrian trail. On the other hand, from the birth season (BS, represented by P1 and P3) to the mating season (MS, represented by P2) the dominance relation between groups, which produced a winner and a loser in the encounters, became obscure; the proportion of close encounters in the I-I increased; the asymmetry (local groups over intruders) of forewarning signals disappeared; the rate of branch shaking decreased; and sometimes intergroup cohesion appeared. Considering that sexual interactions also occurred between the encountering groups, above changes in intergroup behaviors may be explained with a model of the way in which the competition for food (exclusion) and the sexual attractiveness between opposite sexes were in a dynamic equilibrium among the groups, with the former outweighing the latter in the BS, and conversely in the MS. Females made 93% of severe conflicts, which occurred in 18% of close encounters. Groups fissioned in the recent past shared the same home range, and showed the highest hostility to each other by females. In conspicuous contrast with females' great interest in intergroup food/range competition, adult male-male conflicts that were normally without body contact occurred in 66% bf close encounters; high-ranking male herding of females, which is typical in baboons, appeared in 83% of close encounters, and showed no changes with season and sexual weight-dimorphism; peripheral juvenile and subadult males were the main performers of the affinitive behaviors, opportunistic advance and retreat, and guarding at the border. In brief, all males appeared to "sit on the fence" at the border, likely holding out hope of gaining the favor of females both within and outside the group. Thus, females and males attempted to maximize reproductive values in different ways, just as expected by Darwin-Trivers' theory of sexual selection. In addition, group fission was observed in the largest and highest-ranking group for two times (both in the MS) when its size increased to a certain level, and the mother group kept their dominant position in size and rank among the groups that might encounter, suggesting that fission takes a way of discarding the "superfluous part" in order to balance the cost of competition for food and mates within a group, and the benefit of cooperation to access the resources for animals in the mother group. (C) 1997 Wiley-Liss, Inc.
Resumo:
A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop, numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric, and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and, in general, it was difficult to discern clear trends in the data. For the Reynolds-averaged Navier-Stokes (RANS) methods, the choice of turbulence model appeared to be the largest factor in solution accuracy. Scale-resolving methods, such as large-eddy simulation (LES), hybrid RANS/LES, and direct numerical simulation, produced error levels similar to RANS methods but provided superior predictions of normal stresses. Copyright © 2012 by Daniella E. Raveh and Michael Iovnovich.