922 resultados para Interaction of wave and structure
Resumo:
Pollination and seed dispersal are important ecological processes for the regeneration of plant populations and both vectors for gene exchange between plant populations. For my thesis, I studied the pollination ecology of the South African tree Commiphora harveyi (Burseraceae) and compared it with C. guillauminii from Madagascar. Both species have low visitation rates and a low number of pollinating insect species, resulting in a low fruit set. While their pollination ecology is very similar, they differ in their seed dispersal with a low seed dispersal rate in the Malagasy and a high seed dispersal rate in the South African species. This should be reflected in a stronger genetic differentiation among populations in the Malagasy than in the South African species. My results, based on AFLP markers, contradict these expectations, the overall differentiation was lower in the Malagasy (FST = 0.05) than in the South African species (FST = 0.16). However, at a smaller spatial scale (below 3 km), the Malagasy species was genetically more strongly differentiated than the South African species, which was reflected by the high inter-population variance within the sample site (C. guillauminii: 72.2 - 85.5 %; C. harveyi: 8.4 - 14.5 %). This strong differentiation could arise from limited gene flow, which was confirmed by spatial autocorrelation analyses. The shape of the autocorrelogram suggested that gene exchange between individuals occurred only up to 3 km in the Malagasy species, whereas up to 30 km in the South African species. These results on the genetic structure correspond to the expectations based on seed dispersal data. Thus, seed dispersal seems to be a key factor for the genetic structure in plant populations on a local scale.
Resumo:
The idea was to obtain nanowires in a chemical laboratory under convenient and simple conditions by employing templates. Thus it was possible to produce nanochains by interlinking of gold colloids synthesized by the two-phase-method of M. Brust with by making use of vanadiumoxide nanotubes as template. The length of the resulting nanowires is varying between 1100 nm and 200 nm with a diameter of about 16 nm. Due to a flexible linker the obtained nanowires are not completely rigid. These unique structural features could make them interesting objects for structuring and assembling in the nanoscale range. Another way to produce gold nanowires was realized by a two-step surface metallization procedure, using type I collagen fibres as a template. Gold colloids were used to label the collagen fibres by direct electrostatic interaction, followed by growth steps to enhance the size of the adsorbed colloidal gold crystals, resulting in a complete metallization of the template surface. The length of the resulting gold nanowires reaches several micrometers, with a diameter ~ 100 to 120 nm. To gain a deeper insight into the process of biomineralization the cooperative effect of self-assembled monolayers as substrate and a soluble counterpart on the nucleation and crystal growth of calcium phosphate was studied by diffusion techniques with a pH switch as initiator. As soluble component Perlucin and Nacrein were used. Both are proteins originally extracted from marine organisms, the first one from the Abalone shell and the second one from oyster pearls. Both are supposed to facilitate the calcium carbonate formation in vivo. Studies with Perlucin revealed that this protein shows a clear cooperative effect at a very low concentration with a hydrophobic surface promoting the calcium phosphate precipitation resulting in a sponge like structure of hydroxyapatite. The Perlucin molecule is very flexible and is unfolded by adsorbing to the hydrophobic surface and uncovers its active side. Hydrophilic surfaces did not have a deeper impact. Studies with Nacrein as additive have shown that the protein stabilizes octacalcium phosphate at room temperature on carboxylic self-assembled monolayer and at 34 °C on all other employed surfaces by interaction with the mineral. On the hydroxyl-, alkyl-, and amin-terminated self-assembled monolayers at room temperature the octacalcium phosphate get transformed to hydroxyapatite. Main analytical techniques which are used in this work are transmission electron microscopy, high resolution scanning electron microscopy, surface plasmon resonance spectroscopy, atomic force microscopy, Raman micro-spectroscopy and quartz crystal microbalance.
Resumo:
Study of K isomerism in the transfermium region around the deformed shells at N=152, Z=102, and N=162, Z=108 provides important information on the structure of heavy nuclei. Recent calculations suggest that the K-isomerism can enhance the stability of such nuclei against alpha emission and spontaneous fission. Nuclei showing K isomerism have neutron and proton orbitals with large spin projections on the symmetry axis which is due to multi quasiparticle states with aligned spins K. Quasi-particle states are formed by breaking pairs of nucleons and raising one or two nucleons in orbitals near the Fermi surface above the gap, forming high K (multi)quasi-particle states mainly at low excitation energies. Experimental examples are the recently studied two quasi-particle K isomers in 250,256-Fm, 254-No, and 270-Ds. Nuclei in this region, are produced with cross sections ranging from several nb up to µb, which are high enough for a detailed decay study. In this work, K isomerism in Sg and No isotopes was studied at the velocity filter SHIP of GSI, Darmstadt. The data were obtained by using a new data acquisition system which was developed and installed during this work. 252,254-No and 260-Sg were produced in fusion evaporation reactions of 48-Ca and 54-Cr projectiles with 206,208-Pb targets at beam energies close to the Coulomb barrier. A new K isomer was discovered in 252-No at excitation energy of 1.25 MeV, which decays to the ground state rotational band via gamma emission. It has a half-life of about 100 ms. The population of the isomeric state was about 20% of the ground state population. Detailed investigations were performed on 254-No in which two isomeric states (275 ms and 198 µs) were already discovered by R.-D. Herzberg, but due to the higher number of observed gamma decays more detailed information about the decay path of the isomers was obtained in the present work. In 260-Sg, we observed no statistically significant component with a half life different from that of the ground state. A comparison between experimental results and theoretical calculations of the single particle energies shows a fair agreement. The structure of the here studied nuclei is in particular important as single particle levels are involved which are relevant for the next shell closure expected to form the region of the shell stabilized superheavy elements at proton numbers 114, 120, or 126 and neutron number 184. K isomers, in particular, could be an ideal tool for the synthesis and study of these isotopes due to enhanced spontaneous fission life times which could result in higher alpha to spontaneous fission branching ratios and longer half lifes.
Resumo:
The Geoffroy’s bat Myotis emarginatus is mainly present in southern, south-eastern and central Europe (Červerný, 1999) and is often recorded from northern Spain (Quetglas, 2002; Flaquer et al., 2004). It has demonstrated the species’ preference for forest. Myotis capaccinii, confined to the Mediterranean (Guille´n, 1999), is classified as ‘vulnerable’ on a global scale (Hutson, Mickleburgh & Racey, 2001). In general, the species preferred calm waters bordered by well-developed riparian vegetation and large (> 5 m) inter-bank distances (Biscardi et al. 2007). In this study we present the first results about population genetic structure of these two species of genus Myotis. We used two methods of sampling: invasive and non-invasive techniques. A total of 323 invasive samples and a total of 107 non-invasive samples were collected and analyzed. For Myotis emarginatus we have individuated for the first time a set of 7 microsatellites, which can work on this species, started from a set developed on Myotis myotis (Castella et al. 2000). We developed also a method for analysis of non-invasive samples, that given a good percentage of positive analyzed samples. The results have highlighted for the species Myotis emarginatus the presence on the European territory of two big groups, discovered by using the microsatellites tracers. On this species, 33 haplotypes of Dloop have been identified, some of them are presented only in some colonies. We identified respectively 33 haplotypes of Dloop and 10 of cytB for Myotis emarginatus and 25 of dloop and 15 of cytB for Myotis capaccinii. Myotis emarginatus’ results, both microsatellites and mtDNA, show that there is a strong genetic flow between different colonies across Europe. The results achieved on Myotis capaccinii are very interesting, in this case either for the microsatellites or the mitochondrial DNA sequences, and it has been highlighted a big difference between different colonies.
Resumo:
Analytical pyrolysis was used to investigate the formation of diketopiperazines (DKPs) which are cyclic dipeptides formed from the thermal degradation of proteins. A quali/quantitative procedure was developed combining microscale flash pyrolysis at 500 °C with gas chromatography-mass spectrometry (GC-MS) of DKPs trapped onto an adsorbent phase. Polar DKPs were silylated prior to GC-MS. Particular attention was paid to the identification of proline (Pro) containing DKPs due to their greater facility of formation. The GC-MS characteristics of more than 80 original and silylated DKPs were collected from the pyrolysis of sixteen linear dipeptides and four model proteins (e.g. bovine serum albumin, BSA). The structure of a novel DKP, cyclo(pyroglutamic-Pro) was established by NMR and ESI-MS analysis, while the structures of other novel DKPs remained tentative. DKPs resulted rather specific markers of amino acid sequence in proteins, even though the thermal degradation of DKPs should be taken into account. Structural information of DKPs gathered from the pyrolysis of model compounds was employed to the identification of these compounds in the pyrolysate of proteinaceous samples, including intrinsecally unfolded protein (IUP). Analysis of the liquid fraction (bio-oil) obtained from the pyrolysis of microalgae Nannochloropsis gaditana, Scenedesmus spp with a bench scale reactor showed that DKPs constituted an important pool of nitrogen-containing compounds. Conversely, the level of DKPs was rather low in the bio-oil of Botryococcus braunii. The developed micropyrolysis procedure was applied in combination with thermogravimetry (TGA) and infrared spectroscopy (FT-IR) to investigate surface interaction between BSA and synthetic chrysotile. The results showed that the thermal behavior of BSA (e.g. DKPs formation) was affected by the different form of doped synthetic chrysotile. The typical DKPs evolved from collagen were quantified in the pyrolysates of archaeological bones from Vicenne Necropolis in order to evaluate their conservation status in combination with TGA, FTIR and XRD analysis.
Resumo:
A total of 352 specimens were analyzed to achieve the different aims of this thesis. 255 central-northern Adriatic specimens of S. solea and S. aegyptiaca were molecularly analysed using microsatellite locus Sos(AC)40 and 205 also morphologically due to evaluate the abundance and the distribution of the cryptic species S. aegyptiaca and to confirm morphologic analyses. Morphological and molecular analyses comparated show a correspondence of 96%. A combined morphologic approach could be proposed to apply multiple criteria on the analyzed external morphological keys. The Adriatic Egyptian soles may lives in shallow waters (up 30 m) and in brackish lagoon. 127 samples of Adriatic common sole added to 326 samples of previous studies showed, using mitochondrial marker (CytB), that the Adriatic Sea as contact zone between Tyrrhenian and Aegean Sea, the divergence within the Adriatic Sea is low but significant between central-north and south, with a longitudinal strong gene flow in central-northern side. It’s also showed as in the Adriatic Sea two near-panmictic populations of common sole exist.
Resumo:
Structure and folding of membrane proteins are important issues in molecular and cell biology. In this work new approaches are developed to characterize the structure of folded, unfolded and partially folded membrane proteins. These approaches combine site-directed spin labeling and pulse EPR techniques. The major plant light harvesting complex LHCIIb was used as a model system. Measurements of longitudinal and transversal relaxation times of electron spins and of hyperfine couplings to neighboring nuclei by electron spin echo envelope modulation(ESEEM) provide complementary information about the local environment of a single spin label. By double electron electron resonance (DEER) distances in the nanometer range between two spin labels can be determined. The results are analyzed in terms of relative water accessibilities of different sites in LHCIIb and its geometry. They reveal conformational changes as a function of micelle composition. This arsenal of methods is used to study protein folding during the LHCIIb self assembly and a spatially and temporally resolved folding model is proposed. The approaches developed here are potentially applicable for studying structure and folding of any protein or other self-assembling structure if site-directed spin labeling is feasible and the time scale of folding is accessible to freeze-quench techniques.
Resumo:
The two-component system DcuSR of Escherichia coli regulates gene expression of anaerobic fumarate respiration and aerobic C4-dicarboxylate uptake. C4-dicarboxylates and citrate are perceived by the periplasmic domain of the membrane-integral sensor histidine kinase DcuS. The signal is transduced across the membrane by phosphorylation of DcuS and of the response regulator DcuR, resulting in activation of DcuR and transcription of the target genes.rnIn this work, the oligomerisation of full-length DcuS was studied in vivo and in vitro. DcuS was genetically fused to derivatives of the green fluorescent protein (GFP), enabling fluorescence resonance energy transfer (FRET) measurements to detect protein-protein interactions in vivo. FRET measurements were also performed with purified His6-DcuS after labelling with fluorescent dyes and reconstitution into liposomes to study oligomerisation of DcuS in vitro. In vitro and in vivo fluorescence resonance energy transfer showed the presence of oligomeric DcuS in the membrane, which was independent of the presence of effector. Chemical crosslinking experiments allowed clear-cut evaluation of the oligomeric state of DcuS. The results showed that detergent-solubilised His6-DcuS was mainly monomeric and demonstrated the presence of tetrameric DcuS in proteoliposomes and in bacterial membranes.rnThe sensor histidine kinase CitA is part of the two-component system CitAB of E. coli, which is structurally related to DcuSR. CitAB regulates gene expression of citrate fermentation in response to external citrate. The sensor kinases DcuS and CitA were fused with an enhanced variant of the yellow fluorescent protein (YFP) and expressed in E. coli under the control of an arabinose-inducible promoter. The subcellular localisation of DcuS-YFP and CitA-YFP within the cell membrane was studied by means of confocal laser fluorescence microscopy. Both fusion proteins were found to accumulate at the cell poles. The polar accumulation was slightly increased in the presence of the stimulus fumarate or citrate, respectively, but independent of the expression level of the fusion proteins. Cell fractionation demonstrated that polar accumulation was not related to inclusion bodies formation. The degree of polar localisation of DcuS-YFP was similar to that of the well-characterised methyl-accepting chemotaxis proteins (MCPs), but independent of their presence. To enable further investigations on the function of the polar localisation of DcuS under physiological conditions, the sensor kinase was genetically fused to the flavin-based fluorescent protein Bs2 which shows fluorescence under aerobic and anaerobic conditions. The resulting dcuS-bs2 gene fusion was inserted into the chromosome of various E. coli strains.rnFurthermore, a protein-protein interaction between the related sensor histidine kinases DcuS and CitA, regulating common metabolic pathways, was detected via expression studies under anaerobic conditions in the presence of citrate and by in vivo FRET measurements.
Resumo:
The surface properties of minerals have important implications in geology, environment, industry and biotechnology and for certain aspects in the research on the origin of life. This research project aims to widen the knowledge on the nanoscale surface properties of chlorite and phlogopite by means of advanced methodologies, and also to investigate the interaction of fundamental biomolecules, such as nucleotides, RNA, DNA and amino acid glycine with the surface of the selected phyllosilicates. Multiple advanced and complex experimental approaches based on scanning probe microscopy and spatially resolved spectroscopy were used and in some cases specifically developed. The results demonstrate that chlorite exposes at the surface atomically flat terraces with 0.5 nm steps typically generated by the fragmentation of the octahedral sheet of the interlayer (brucitic-type). This fragmentation at the nanoscale generates a high anisotropy and inhomogeneity with surface type and isomorphous cationic substitutions determining variations of the effective surface potential difference, ranging between 50-100 mV and 400-500 mV, when measured in air, between the TOT surface and the interlayer brucitic sheet. The surface potential was ascribed to be the driving force of the observed high affinity of the surface with the fundamental biomolecules, like single molecules of nucleotides, DNA, RNA and amino acids. Phlogopite was also observed to present an extended atomically flat surface, featuring negative surface potential values of some hundreds of millivolts and no significant local variations. Phlogopite surface was sometimes observed to present curvature features that may be ascribed to local substitutions of the interlayer cations or the presence of a crystal lattice mismatch or structural defects, such as stacking faults or dislocation loops. Surface chemistry was found similar to the bulk. The study of the interaction with nucleotides and glycine revealed a lower affinity with respect to the brucite-like surface of chlorite.
Resumo:
Die Zinkendopeptidasen Meprin α und β sind Schlüsselkomponenten in patho(physiologischen) Prozessen wie Entzündung, Kollagenassemblierung und Angiogenese. Nach ihrer Entdeckung in murinen Bürstensaummembranen und humanen Darmepithelien, wurden weitere Expressionsorte identifiziert, z.B. Leukozyten, Krebszellen und die humane Haut. Tiermodelle, Zellkulturen und biochemische Analysen weisen auf Funktionen der Meprine in der Epithelialdifferenzierung, Zellmigration, Matrixmodellierung, Angiogenese, Bindegewebsausbildung und immunologische Prozesse hin. Dennoch sind ihre physiologischen Substrate weitgehend noch unbekannt. Massenspektrometrisch basierte Proteomics-Analysen enthüllten eine einzigartige Spaltspezifität für saure Aminosäurereste in der P1´ Position und identifizierten neue biologische Substratkandidaten. Unter den 269 extrazellulären Proteinen, die in einem Substratscreen identifiziert wurden, stellten sich das amyloid precursor protein (APP) and ADAM10 (a disintegrin and metalloprotease 10) als sehr vielversprechende Kandidaten heraus. Mehrere Schnittstellen innerhalb des APP Proteins, hervorgerufen durch verschiedenen Proteasen, haben unterschiedlichen Auswirkungen zur Folge. Die β-Sekretase BACE (β-site APP cleaving enzyme) prozessiert APP an einer Schnittstelle, welche als initialer Schritt in der Entwicklung der Alzheimer Erkrankung gilt. Toxische Aβ (Amyloid β)-Peptide werden in den extrazellulären Raum freigesetzt und aggregieren dort zu senilen Plaques. Membran verankertes Meprin β hat eine β-Sekretase Aktivität, die in einem Zellkultur-basierten System bestätigt werden konnte. Die proteolytische Effizienz von Meprin β wurde in FRET (Fluorescence Resonance Energy Transfer)-Analysen bestimmt und war um den Faktor 104 höher als die von BACE1. Weiterhin konnte gezeigt werden, dass Meprin β die ersten zwei Aminosäuren prozessiert und somit aminoterminal einen Glutamatrest freisetzt, welcher nachfolgend durch die Glutaminylzyklase in ein Pyroglutamat zykliert werden kann. Trunkierte Aβ-Peptide werden nur in Alzheimer Patienten generiert. Aufgrund einer erhöhten Hydrophobie weisen diese Peptide eine höhere Tendenz zur Aggregation auf und somit eine erhöhte Toxizität. Bis heute wurde keine Protease identifiziert, welche diese Schnittstelle prozessiert. Die Bildung der Meprin vermittelten N-terminalen APP Fragmenten wurde in vitro und in vivo detektiert. Diese N-APP Peptide hatten keine cytotoxischen Auswirkungen auf murine und humane Gehirnzellen, obwohl zuvor N-APP als Ligand für den death receptor (DR) 6 identifiziert wurde, der für axonale Degenerationsprozesse verantwortlich ist. rnIm nicht-amyloidogenen Weg prozessiert ADAM10 APP und entlässt die Ektodomäne von der Zellmembran. Wir konnten das ADAM10 Propeptid als Substrat von Meprin β identifizieren und in FRET Analysen, in vitro und in vivo zeigen, dass die Meprin vermittelte Prozessierung zu einer erhöhten ADAM10 Aktivität führt. Darüber hinaus wurde ADAM10 als Sheddase für Meprin β identifiziert. Shedding konnte durch Phorbol 12-myristate 13-acetate (PMA) oder durch das Ionophor A23187 hervorgerufen werden, sowie durch ADAM10 Inhibitoren blockiert werden. rnDiese Arbeit konnte somit ein komplexes proteolytisches Netwerk innerhalb der Neurophysiologie aufdecken, welches für die Entwicklung der Alzheimer Demenz wichtig sein kann.rn
Resumo:
The thesis analyses the hydrodynamic induced by an array of Wave energy Converters (WECs), under an experimental and numerical point of view. WECs can be considered an innovative solution able to contribute to the green energy supply and –at the same time– to protect the rear coastal area under marine spatial planning considerations. This research activity essentially rises due to this combined concept. The WEC under exam is a floating device belonging to the Wave Activated Bodies (WAB) class. Experimental data were performed at Aalborg University in different scales and layouts, and the performance of the models was analysed under a variety of irregular wave attacks. The numerical simulations performed with the codes MIKE 21 BW and ANSYS-AQWA. Experimental results were also used to calibrate the numerical parameters and/or to directly been compared to numerical results, in order to extend the experimental database. Results of the research activity are summarized in terms of device performance and guidelines for a future wave farm installation. The device length should be “tuned” based on the local climate conditions. The wave transmission behind the devices is pretty high, suggesting that the tested layout should be considered as a module of a wave farm installation. Indications on the minimum inter-distance among the devices are provided. Furthermore, a CALM mooring system leads to lower wave transmission and also larger power production than a spread mooring. The two numerical codes have different potentialities. The hydrodynamics around single and multiple devices is obtained with MIKE 21 BW, while wave loads and motions for a single moored device are derived from ANSYS-AQWA. Combining the experimental and numerical it is suggested –for both coastal protection and energy production– to adopt a staggered layout, which will maximise the devices density and minimize the marine space required for the installation.
Resumo:
The Large Magellanic Cloud (LMC) is widely considered as the first step of the cosmological distance ladder, since it contains many different distance indicators. An accurate determination of the distance to the LMC allows one to calibrate these distance indicators that are then used to measure the distance to far objects. The main goal of this thesis is to study the distance and structure of the LMC, as traced by different distance indicators. For these purposes three types of distance indicators were chosen: Classical Cepheids,``hot'' eclipsing binaries and RR Lyrae stars. These objects belong to different stellar populations tracing, in turn, different sub-structures of the LMC. The RR Lyrae stars (age >10 Gyr) are distributed smoothly and likely trace the halo of the LMC. Classical Cepheids are young objects (age 50-200 Myr), mainly located in the bar and spiral arm of the galaxy, while ``hot'' eclipsing binaries mainly trace the star forming regions of the LMC. Furthermore, we have chosen these distance indicators for our study, since the calibration of their zero-points is based on fundamental geometric methods. The ESA cornerstone mission Gaia, launched on 19 December 2013, will measure trigonometric parallaxes for one billion stars with an accuracy of 20 micro-arcsec at V=15 mag, and 200 micro-arcsec at V=20 mag, thus will allow us to calibrate the zero-points of Classical Cepheids, eclipsing binaries and RR Lyrae stars with an unprecedented precision.
Resumo:
Diese Dissertation ist in zwei Teile aufgeteilt: Teil 1 befasst sich mit der Vorhersage von Halb-Metallizität in quarternären Heuslerverbindungen und deren Potential für Spintronik-Anwendungen. Teil 2 befasst sich mit den strukturellen Eigenschaften der Mn2-basierenden Heuslerverbindungen und dem Tuning von ihrer magnetischen Eigenschaften bzgl. Koerzitivfeldstärke und Remanenz. Diese Verbindungen sind geeignet für Spin-Transfer Torque-Anwendungen.rnrnIn Teil 1 wurden die folgenden drei Probenserien quarternärer Heuslerverbindungen untersucht: XX´MnGa (X = Cu, Ni und X´ = Fe, Co), CoFeMnZ (Z = Al, Ga, Si, Ge) und Co2−xRhxMnZ (Z = Ga, Sn, Sb). Abgesehen von CuCoMnGa wurden alle diese Verbindungen mittels ab-initio Bandstrukturrechnungen als halbmetallische Ferromagnete prognostiziert. In der XX´MnGa-Verbindungsklasse besitzt NiFeMnGa zwar eine zu niedrige Curie-Temperatur für technologische Anwendungen, jedoch NiCoMnGa mit seiner hohen Spinpolarisation, einem hohen magnetischen Moment und einer hohen Curie-Temperatur stellt ein neues Material für Spintronik-Anwendungen dar. Alle CoFeMnZ-Verbindungen kristallisieren in der kubischen Heuslerstruktur und ihre magnetischen Momente folgen der Slater-Pauling-Regel, was Halbmetalizität und eine hohe Spinpolarisation impliziert. Die ebenfalls hohen Curie-Temperaturen ermöglichen einen Einsatz weit über Raumtemperatur hinaus. In der strukturellen Charakterisierung wurde festgestellt, dass sämtliche Co2−xRhxMnZ abgesehen von CoRhMnSn verschiedene Typen von Unordnung aufweisen; daher war die ermittelte Abweichung von der Slater-Pauling-Regel sowie von der 100%-igen Spinpolarisation dieser Verbindungen zu erwarten. Die Halbmetallizität der geordneten CoRhMnSn-Verbindung sollte nach den durchgeführten magnetischen Messungen vorhanden sein.rnrnIm zweiten Teil wurden Mn3−xCoxGa und Mn2−xRh1+xSn synthetisiert und charakterisiert. Es wurde gezeigt, dass Mn3−xCoxGa im Bereich x = 0.1 − 0.4 in einer tetragonal verzerrten inversen Heuslerstruktur kristallisiert und im Bereich x = 0.6−1 in einer kubisch inversen Heuslerstruktur. Während die tetragonalen Materialien hartmagnetisch sind und Charakeristika aufweisen, die typischerweise für Spin-Transfer Torque-Anwengungen attraktiv sind, repräsentieren die weichmagnetischen kubischen Vertreter die 100% spinpolarisierten Materialien, die der Slater-Pauling-Regel folgen. Mn2RhSn kristallisiert in der inversen tetragonal verzerrten Heuslerstruktur, weist einernhartmagnetische Hystereseschleife auf und folgt nicht der Slater-Pauling-Regel. Bei hohen Rh-Gehalt wird die kubische inverse Heuslerstruktur gebildet. Alle kubischen Proben sind weichmagnetisch und folgen der Slater-Pauling-Regel.
Resumo:
Organic molecular semiconductors are subject of intense research for their crucial role as key components of new generation low cost, flexible, and large area electronic devices such as displays, thin-film transistors, solar cells, sensors and logic circuits. In particular, small molecular thienoimide (TI) based materials are emerging as novel multifunctional materials combining a good processability together to ambipolar or n-type charge transport and electroluminescence at the solid state, thus enabling the fabrication of integrated devices like organic field effect transistors (OFETs) and light emitting transistor (OLETs). Given this peculiar combination of characteristics, they also constitute the ideal substrates for fundamental studies on the structure-property relationships in multifunctional molecular systems. In this scenario, this thesis work is focused on the synthesis of new thienoimide based materials with tunable optical, packing, morphology, charge transport and electroluminescence properties by following a fine molecular tailoring, thus optimizing their performances in device as well as investigating and enabling new applications. Investigation on their structure-property relationships has been carried out and in particular, the effect of different π-conjugated cores (heterocycles, length) and alkyl end chain (shape, length) changes have been studied, obtaining materials with enhanced electron transport capability end electroluminescence suitable for the realization of OFETs and single layer OLETs. Moreover, control on the polymorphic behaviour characterizing thienoimide materials has been reached by synthetic and post-synthetic methodologies, developing multifunctional materials from a single polymorphic compound. Finally, with the aim of synthesizing highly pure materials, simplifying the purification steps and avoiding organometallic residues, procedures based on direct arylation reactions replacing conventional cross-couplings have been investigated and applied to different classes of molecules, bearing thienoimidic core or ends, as well as thiophene and anthracene derivatives, validating this approach as a clean alternative for the synthesis of several molecular materials.