949 resultados para Inter-organizational collaborative networks
Resumo:
A number of characteristics are boosting the eagerness of extending Ethernet to also cover factory-floor distributed real-time applications. Full-duplex links, non-blocking and priority-based switching, bandwidth availability, just to mention a few, are characteristics upon which that eagerness is building up. But, will Ethernet technologies really manage to replace traditional Fieldbus networks? Ethernet technology, by itself, does not include features above the lower layers of the OSI communication model. In the past few years, it is particularly significant the considerable amount of work that has been devoted to the timing analysis of Ethernet-based technologies. It happens, however, that the majority of those works are restricted to the analysis of sub-sets of the overall computing and communication system, thus without addressing timeliness at a holistic level. To this end, we are addressing a few inter-linked research topics with the purpose of setting a framework for the development of tools suitable to extract temporal properties of Commercial-Off-The-Shelf (COTS) Ethernet-based factory-floor distributed systems. This framework is being applied to a specific COTS technology, Ethernet/IP. In this paper, we reason about the modelling and simulation of Ethernet/IP-based systems, and on the use of statistical analysis techniques to provide usable results. Discrete event simulation models of a distributed system can be a powerful tool for the timeliness evaluation of the overall system, but particular care must be taken with the results provided by traditional statistical analysis techniques.
Resumo:
Advances in networking and information technologies are transforming factory-floor communication systems into a mainstream activity within industrial automation. It is now recognized that future industrial computer systems will be intimately tied to real-time computing and to communication technologies. For this vision to succeed, complex heterogeneous factory-floor communication networks (including mobile/wireless components) need to function in a predictable, flawless, efficient and interoperable way. In this paper we re-visit the issue of supporting real-time communications in hybrid wired/wireless fieldbus-based networks, bringing into it some experimental results obtained in the framework of the RFieldbus ISEP pilot.
Resumo:
In this paper we describe a real-time industrial communication network able to support both controlrelated and multimedia traffic. The industrial communication network is based on the PROFIBUS standard, with multimedia capabilities being provided by an adequate integration of TCP/IP protocols into the PROFIBUS stack. From the operational point of view the integration of TCP/IP into PROFIBUS is by itself a challenge, since the master-slave nature of the PROFIBUS MAC makes complex the implementation of the symmetry inherent to IP communications. From the timeliness point of view the challenge is two folded. On one hand the multimedia traffic should not interfere with the timing requirements of the "native" control-related PROFIBUS traffic (typically hard real-time). On the other hand multimedia traffic requires certain levels of quality-of-service to be attained. In this paper we provide a methodology that enables fulfilling the timing requirements for both types of traffic in these real-time industrial LAN. Moreover, we describe suitable algorithms for the scheduling support of concurrent multimedia streams.
Resumo:
In this paper we describe how to integrate Internet Protocols (IP) into a typical hierarchical master-slave fieldbus network, supporting a logical ring token passing mechanism between master stations. The integration of the TCP/IP protocols in the fieldbus protocol rises a number of issues that must be addressed properly. In this paper we particularly address the issues related to the conveyance of IP fragments in fieldbus frames (fragmentation/de-fragmentation) and on how to support the symmetry inherent to the TCP/IP protocols in fieldbus slaves, which lack communication initiative.
Resumo:
Broadcast networks that are characterised by having different physical layers (PhL) demand some kind of traffic adaptation between segments, in order to avoid traffic congestion in linking devices. In many LANs, this problem is solved by the actual linking devices, which use some kind of flow control mechanism that either tell transmitting stations to pause (the transmission) or just discard frames. In this paper, we address the case of token-passing fieldbus networks operating in a broadcast fashion and involving message transactions over heterogeneous (wired or wireless) physical layers. For the addressed case, real-time and reliability requirements demand a different solution to the traffic adaptation problem. Our approach relies on the insertion of an appropriate idle time before a station issuing a request frame. In this way, we guarantee that the linking devices’ queues do not increase in a way that the timeliness properties of the overall system turn out to be unsuitable for the targeted applications.
Resumo:
Profibus networks are widely used as the communication infrastructure for supporting distributed computer-controlled applications. Most of the times, these applications impose strict real-time requirements. Profibus-DP has gradually become the preferred Profibus application profile. It is usually implemented as a mono-master Profibus network, and is optimised for speed and efficiency. The aim of this paper is to analyse the real-time behaviour of this class of Profibus networks. Importantly, we develop a new methodology for evaluating the worst-case message response time in systems where high-priority and cyclic low-priority Profibus traffic coexist. The proposed analysis constitutes a powerful tool to guarantee prior to runtime the real-time behaviour of a distributed computer-controlled system based on a Profibus network, where the realtime traffic is supported either by high-priority or by cyclic poll Profibus messages.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within process control applications. Therefore, they constitute the foundation upon which real-time distributed computer-controlled systems can be implemented. P-NET is a fieldbus communication standard, which uses a virtual token-passing medium-access-control mechanism. In this paper pre-run-time schedulability conditions for supporting real-time traffic with P-NET networks are established. Essentially, formulae to evaluate the upper bound of the end-to-end communication delay in P-NET messages are provided. Using this upper bound, a feasibility test is then provided to check the timing requirements for accessing remote process variables. This paper also shows how P-NET network segmentation can significantly reduce the end-to-end communication delays for messages with stringent timing requirements.
Resumo:
Fieldbus networks aim at the interconnection of field devices such as sensors, actuators and small controllers. Therefore, they are an effective technology upon which Distributed Computer Controlled Systems (DCCS) can be built. DCCS impose strict timeliness requirements to the communication network. In essence, by timeliness requirements we mean that traffic must be sent and received within a bounded interval, otherwise a timing fault is said to occur. P-NET is a multi-master fieldbus standard based on a virtual token passing scheme. In P-NET each master is allowed to transmit only one message per token visit, which means that in the worst-case the communication response time could be derived considering that the token is fully utilised by all stations. However, such analysis can be proved to be quite pessimistic. In this paper we propose a more sophisticated P-NET timing analysis model, which considers the actual token utilisation by different masters. The major contribution of this model is to provide a less pessimistic, and thus more accurate, analysis for the evaluation of the worst-case communication response time in P-NET fieldbus networks.
Resumo:
Recently, there have been a few research efforts towards extending the capabilities of fieldbus networks to encompass wireless support. In previous works we have proposed a hybrid wired/wireless PROFIBUS network solution where the interconnection between the heterogeneous communication media was accomplished through bridge-like interconnecting devices. The resulting networking architecture embraced a multiple logical ring (MLR) approach, thus with multiple independent tokens, to which a specific bridging protocol extension, the inter-domain protocol (IDP), was proposed. The IDP offers compatibility with standard PROFIBUS, and includes mechanisms to support inter-cell mobility of wireless nodes. We advance that work by proposing a worst-case response timing analysis of the IDP.
Resumo:
Controller area network (CAN) is a fieldbus network suitable for small-scale distributed computer controlled systems (DCCS), being appropriate for sending and receiving short real-time messages at speeds up to 1 Mbit/sec. Several studies are available on how to guarantee the real-time requirements of CAN messages, providing preruntime schedulability conditions to guarantee the real-time communication requirements of DCCS traffic. Usually, it is considered that CAN guarantees atomic multicast properties by means of its extensive error detection/signaling mechanisms. However, there are some error situations where messages can be delivered in duplicate or delivered only by a subset of the receivers, leading to inconsistencies in the supported applications. In order to prevent such inconsistencies, a middleware for reliable communication in CAN is proposed, taking advantage of CAN synchronous properties to minimize the runtime overhead. Such middleware comprises a set of atomic multicast and consolidation protocols, upon which the reliable communication properties are guaranteed. The related timing analysis demonstrates that, in spite of the extra stack of protocols, the real-time properties of CAN are preserved since the predictability of message transfer is guaranteed.
Resumo:
Fieldbus networks are becoming increasingly popular in industrial computer-controlled systems. More recently, there has been the desire to extend the capabilities of fieldbuses to cover functionalities not previously considered in such networks, with particular emphasis on industrial wireless communications. Thinking about wireless means considering hybrid wired/wireless solutions capable of interoperating with legacy (wired) systems. One possible solution is to use intermediate systems (IS) acting as repeaters to interconnect the wired and wireless parts. In contrast, we analyze a solution where intermediate systems are implemented as bridges/routers. We detail the main advantages in terms of dependability and timeliness, and propose mechanisms to manage message transactions and intercell mobility.
Resumo:
Localization is a fundamental task in Cyber-Physical Systems (CPS), where data is tightly coupled with the environment and the location where it is generated. The research literature on localization has reached a critical mass, and several surveys have also emerged. This review paper contributes on the state-of-the-art with the proposal of a new and holistic taxonomy of the fundamental concepts of localization in CPS, based on a comprehensive analysis of previous research works and surveys. The main objective is to pave the way towards a deep understanding of the main localization techniques, and unify their descriptions. Furthermore, this review paper provides a complete overview on the most relevant localization and geolocation techniques. Also, we present the most important metrics for measuring the accuracy of localization approaches, which is meant to be the gap between the real location and its estimate. Finally, we present open issues and research challenges pertaining to localization. We believe that this review paper will represent an important and complete reference of localization techniques in CPS for researchers and practitioners and will provide them with an added value as compared to previous surveys.
Resumo:
Determining the response time of message transactions is one of the major concerns in the design of any distributed computer-controlled system. Such response time is mainly dependent on the medium access delay, the message length and the transmission delay. While the medium access delay in fieldbus networks has been thoroughly studied in the last few years, the transmission delay has been almost ignored as it is considered that it can be neglected when compared to the length of the message itself. Nevertheless, this assumption is no longer valid when considering the case of hybrid wired/wireless fieldbus networks, where the transmission delay through a series of different mediums can be several orders of magnitude longer than the length of the message itself. In this paper, we show how to compute the duration of message transactions in hybrid wired/wireless fieldbus networks. This duration is mainly dependent on the duration of the request and response frames and on the number and type of physical mediums that the frames must cross between initiator and responder. A case study of a hybrid wired/wireless fieldbus network is also presented, where it becomes clear the interest of the proposed approach
Resumo:
Technological developments are pulling fieldbus networks to support a new wide class of applications, such as industrial multimedia applications. To enable its use in this kind of applications the TCP/IP suite of protocols can be integrated within a fieldbus stack, leading to a dual-stack approach that is briefly outlined in the paper. One important requirement that must be fulfilled by this approach is that the hard real-time guarantees provided to the control-related traffic ("native" fieldbus traffic) are kept. At the same time it must also provide the desired quality of service (QoS) to IP applications. The focus of the paper is on how, in such a dual-stack approach, QoS can be efficiently provided to IP applications requiring quasi-constant bandwidth.
Resumo:
Field communication systems (fieldbuses) are widely used as the communication support for distributed computer-controlled systems (DCCS) within all sort of process control and manufacturing applications. There are several advantages in the use of fieldbuses as a replacement for the traditional point-to-point links between sensors/actuators and computer-based control systems, within which the most relevant is the decentralisation and distribution of the processing power over the field. A widely used fieldbus is the WorldFIP, which is normalised as European standard EN 50170. Using WorldFIP to support DCCS, an important issue is “how to guarantee the timing requirements of the real-time traffic?” WorldFIP has very interesting mechanisms to schedule data transfers, since it explicitly distinguishes periodic and aperiodic traffic. In this paper, we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis on how to guarantee the timing requirements of the real-time traffic.