915 resultados para In-situ XANES experiments
Resumo:
Genetic evidence indicates that the major gelatinases MMP-2 and MMP-9 are involved in mammalian craniofacial development. Since these matrix metalloproteinases are secreted as proenzymes that require activation, their tissue distribution does not necessarily reflect the sites of enzymatic activity. Information regarding the spatial and temporal expression of gelatinolytic activity in the head of the mammalian embryo is sparse. Sensitive in situ zymography with dye-quenched gelatin (DQ-gelatin) has been introduced recently; gelatinolytic activity results in a local increase in fluorescence. Using frontal sections of wild-type mouse embryo heads from embryonic day 14.5-15.5, we optimized and validated a simple double-labeling in situ technique for combining DQ-gelatin zymography with immunofluorescence staining. MMP inhibitors were tested to confirm the specificity of the reaction in situ, and results were compared to standard SDS-gel zymography of tissue extracts. Double-labeling was used to show the spatial relationship in situ between gelatinolytic activity and immunostaining for gelatinases MMP-2 and MMP-9, collagenase 3 (MMP-13) and MT1-MMP (MMP-14), a major activator of pro-gelatinases. Strong gelatinolytic activity, which partially overlapped with MMP proteins, was confirmed for Meckel's cartilage and developing mandibular bone. In addition, we combined in situ zymography with immunostaining for extracellular matrix proteins that are potential gelatinase substrates. Interestingly, gelatinolytic activity colocalized precisely with laminin-positive basement membranes at specific sites around growing epithelia in the developing mouse head, such as the ducts of salivary glands or the epithelial fold between tongue and lower jaw region. Thus, this sensitive method allows to associate, with high spatial resolution, gelatinolytic activity with epithelial morphogenesis in the embryo.
Resumo:
After an uneventful general anesthesia, in a horse negative pressure pulmonary edema developed due to acute upper airway obstruction during the anesthetic recovery phase after colic surgery. No pathologic alteration of respiration was observed until the horse stood up and began suffocating. The horse had recovered with the nasogastric tube in situ. This, together with the postmortem diagnosis of laryngeal hemiplegia resulted in impairment of airflow through the larynx and development of pulmonary edema. Our objective is to alert clinicians about the possible hazard of recovery with an in-situ nasogastric tube.
Resumo:
The resting and maximum in situ cardiac performance of Newfoundland Atlantic cod (Gadus morhua) acclimated to 10, 4 and 0°C were measured at their respective acclimation temperatures, and when acutely exposed to temperature changes: i.e. hearts from 10°C fish cooled to 4°C, and hearts from 4°C fish measured at 10 and 0°C. Intrinsic heart rate (f(H)) decreased from 41 beats min(-1) at 10°C to 33 beats min(-1) at 4°C and 25 beats min(-1) at 0°C. However, this degree of thermal dependency was not reflected in maximal cardiac output (Q(max) values were ~44, ~37 and ~34 ml min(-1) kg(-1) at 10, 4 and 0°C, respectively). Further, cardiac scope showed a slight positive compensation between 4 and 0°C (Q(10)=1.7), and full, if not a slight over compensation between 10 and 4°C (Q(10)=0.9). The maximal performance of hearts exposed to an acute decrease in temperature (i.e. from 10 to 4°C and 4 to 0°C) was comparable to that measured for hearts from 4°C- and 0°C-acclimated fish, respectively. In contrast, 4°C-acclimated hearts significantly out-performed 10°C-acclimated hearts when tested at a common temperature of 10°C (in terms of both Q(max) and power output). Only minimal differences in cardiac function were seen between hearts stimulated with basal (5 nmol l(-1)) versus maximal (200 nmol l(-1)) levels of adrenaline, the effects of which were not temperature dependent. These results: (1) show that maximum performance of the isolated cod heart is not compromised by exposure to cold temperatures; and (2) support data from other studies, which show that, in contrast to salmonids, cod cardiac performance/myocardial contractility is not dependent upon humoral adrenergic stimulation.
Resumo:
The recent increase in the amount of nanoparticles incorporated into commercial products is accompanied by a rising concern of the fate of these nanoparticles. Once released into the environment, it is inevitable that the nanoparticles will come into contact with the soil, introducing them to various routes of environmental contamination. One route that was explored in this research was the interaction between nanoparticles and clay minerals. In order to better define the interactions between clay minerals and positively charged nanoparticles, in situ atomic force microscopy (AFM) was utilized. In situ AFM experiments allowed interactions between clay minerals and positively charged nanoparticles to be observed in real time. The preliminary results demonstrated that in situ AFM was a reliable technique for studying the interactions between clay minerals and positively charged nanoparticles and showed that the nanoparticles affected the swelling (height) of the clay quasi-crystals upon exposure. The preliminary AFM data were complemented by batch study experiments which measured the absorbance of the nanoparticle filtrate after introduction to clay minerals in an effort to better determine the mobility of the positively charged nanoparticles in an environment with significant clay contribution. The results of the batch study indicated that the interactions between clay minerals and positively charged nanoparticles were size dependent and that the interactions of the different size nanoparticles with the clay may be occurring to different degrees. The degree to which the different size nanoparticles were interacting with the clay was further probed using FTIR (Fourier transform infrared) spectroscopy experiments. The results of these experiments showed that interactions between clay minerals and positively charged nanoparticles were size dependent as indicated by a change in the FTIR spectra of the nanoparticles upon introduction to clay.
Resumo:
The clinical use of the alkylating oxazaphosphorine ifosfamide is hampered by a potentially severe encephalopathy. S-carboxymethylcysteine (SCMC), a metabolite of ifosfamide (IF), activates the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor, causes neuronal acidification, and could thus be responsible for the encephalopathy. Since the presence of SCMC in brain has not been documented following administration of IF, SCMC was measured in the brain of mice following both the individual i.p. administration of IF and SCMC. SCMC was found in a concentration of 108.2 +/- 29.7 nmol/g following IF, but was detectable at much lower levels following the administration of SCMC (21.1 +/- 21.2 nmol/g). Together with the observation that the concentration of SCMC was 10-fold higher in liver than in brain 1h after administration of SCMC, these findings suggest that the SCMC found after IF was formed in the brain in situ. The concentration of glutamic acid was similar in IF and SCMC treated animals. Methylene blue, which is used clinically to treat and to prevent IF encephalopathy, did not decrease the formation of SCMC in brain. By inhibiting monoamine oxidase activity it did, however, markedly increase the concentration of serotonin in brain which could modulate the effects of SCMC on AMPA/kainate receptors. Thus, SCMC is present in brain following the administration of IF and could contribute to the IF-associated encephalopathy by activation of AMPA/kainate receptors.
Resumo:
Effects of soil freezing on nitrogen (N) mineralization have been the subject of increased attention in the ecological literature, though fewer studies have examined N mineralization responses to successive mild freezing, severe freezing and cyclic freeze–thaw events. Even less is known about relationships of responses to soil N status. This study measured soil N mineralization and nitrification in the field along an experimental N gradient in a grassland of northern China during the dormant season (October 2005–April 2006), a period in which freezing naturally occurs. Net N mineralization exhibited great temporal variability, with nitrification being the predominant N transformation process. Soil microbial biomass C and N and extractable NH4 + pools declined by 40, 52, and 56%, respectively, in April 2006, compared with their initial concentrations in October 2005; soil NO3– pools increased by 84%. Temporal patterns of N mineralization were correlated with soil microbial biomass C and N. N mineralization and nitrification increased linearly with added N. Microbial biomass C in treated soils increased by 10% relative to controls, whereas microbial N declined by 9%. Results further suggest that freezing events greatly alter soil N dynamics in the dormant season at this site, with considerable available N accumulating during this period.
Resumo:
This paper discusses estimation of the tumor incidence rate, the death rate given tumor is present and the death rate given tumor is absent using a discrete multistage model. The model was originally proposed by Dewanji and Kalbfleisch (1986) and the maximum likelihood estimate of the tumor incidence rate was obtained using EM algorithm. In this paper, we use a reparametrization to simplify the estimation procedure. The resulting estimates are not always the same as the maximum likelihood estimates but are asymptotically equivalent. In addition, an explicit expression for asymptotic variance and bias of the proposed estimators is also derived. These results can be used to compare efficiency of different sacrifice schemes in carcinogenicity experiments.