877 resultados para In-phase
Resumo:
This study investigated whether the epidemiology of penicillin-non-susceptible pneumococci (PNSP) colonising small children correlated with the biannual epidemic activity of respiratory syncytial virus (RSV). Colonisation rates and the prevalence of PNSP among paediatric outpatients aged < 5 years was analysed between January 1998 and September 2003 using an established national surveillance network. Resistance trends were investigated using time-series analysis to assess the correlation with the biannual pattern of RSV infections and national sales of oral paediatric formulations of antibiotics and antibiotic prescriptions to children aged < 5 years for acute respiratory tract infections. PNSP rates exhibited a biannual cycle in phase with the biannual seasonal RSV epidemics (p < 0.05). Resistance rates were higher during the winter seasons of 1998-1999 (20.1%), 2000-2001 (16.0%) and 2002-2003 (19.1%), compared with the winter seasons of 1997-1998 (8.2%), 1999-2000 (11.6%) and 2001-2002 (9.5%). Antibiotic sales and prescriptions showed regular peaks during each winter, with no significant correlation with the biannual pattern of RSV activity and seasonal trends of PNSP. RSV is an important determinant of the spread of PNSP and must be considered in strategies aimed at antimicrobial resistance control.
Resumo:
Gastrin-releasing peptide receptors (GRP-R) are upregulated in many cancers, including prostate, breast, and lung. We describe a new radiolabeled bombesin (BBN) analog for imaging and systemic radiotherapy that has improved pharmacokinetics (PK) and better retention of radioactivity in the tumor. METHODS: DO3A-CH2CO-G-4-aminobenzoyl-Q-W-A-V-G-H-L-M-NH2 (AMBA) was synthesized and radiolabeled. The human prostate cancer cell line PC-3 was used to determine the binding (Kd), retention, and efflux of 177Lu-AMBA. Receptor specificity was determined by in vitro autoradiography in human tissues. PK and radiotherapy studies were performed in PC-3 tumor-bearing male nude mice. RESULTS: 177Lu-AMBA has a high affinity for the GRP-R (Kd, 1.02 nmol/L), with a maximum binding capacity (Bmax) of 414 fmol/10(6) cells (2.5 x 10(5) GRP-R/cell). Internalization was similar for 177Lu-AMBA (76.8%), 177Lu-BBN8 (72.9%), and 125I-[Tyr4]-BBN (74.9%). Efflux was markedly lower for 177Lu-AMBA (2.9%) compared with 177Lu-BBN8 (15.9%) and 125I-[Tyr4]-BBN (46.1%). By receptor autoradiography, Lu-AMBA binds specifically to GRP-R (0.8 nmol/L) and to the neuromedin B receptor (NMB-R) (0.9 nmol/L), with no affinity for the bb3 receptor (>1,000 nmol/L). 177Lu-AMBA was renally excreted (55 %ID 1 h [percentage injected dose at 1 h]); tumor uptake at 1 and 24 h was 6.35 %ID/g and 3.39 %ID/g, respectively. One or 2 doses of 177Lu-AMBA (27.75 MBq/dose) significantly prolonged the life span of PC-3 tumor-bearing mice (P < 0.001 and P < 0.0001, respectively) and decreased PC-3 tumor growth rate over controls. When compared using World Health Organization criteria, mice receiving 2 doses versus 1 dose of 177Lu-AMBA demonstrated a shift away from stable/progressive disease toward complete/partial response; by RECIST (Response Evaluation Criteria in Solid Tumors), median survival increased by 36% and time to progression/progression-free survival increased by 65%. CONCLUSION: 177Lu-AMBA binds with nanomolar affinity to GRP-R and NMB-R, has low retention of radioactivity in kidney, demonstrates a very favorable risk-benefit profile, and is in phase I clinical trials.
Resumo:
OBJECTIVE: To compare the effect of bimatoprost and the fixed combination of latanoprost and timolol (LTFC) on 24-hour mean intraocular pressure (IOP) after patients are switched from a nonfixed combination of latanoprost and timolol. DESIGN: Randomized, double-masked, multicenter clinical trial. PARTICIPANTS: Two hundred patients with glaucoma or ocular hypertension. METHODS: Included were patients who were controlled (IOP < 21 mmHg) on the nonfixed combination of latanoprost and timolol for at least 3 months before the baseline visit or patients on monotherapy with either latanoprost or timolol who were eligible for dual therapy not being fully controlled on monotherapy. The latter group of patients underwent a 6-week wash-in phase with the nonfixed combination of latanoprost and timolol before baseline IOP determination and study inclusion. Supine and sitting position IOPs were recorded at 8 pm, midnight, 5 am, 8 am, noon, and 4 pm at baseline, week 6, and week 12 visits. MAIN OUTCOME MEASURE: An analysis of covariance model was used for a noninferiority test of the primary efficacy variable, with mean area under the 24-hour IOP curve after 12 weeks of treatment as response variable and treatment, center, and baseline IOP as factors. A secondary analysis was performed on the within-treatment change from baseline. RESULTS: Mean baseline IOPs were 16.3+/-3.3 mmHg and 15.5+/-2.9.mmHg in the bimatoprost and LTFC groups, respectively. At week 12, mean IOPs were 16.1+/-2.5 mmHg for the bimatoprost group and 16.3+/-3.7 mmHg for the LTFC group, and no significant difference between the 2 treatment groups could be found. As compared with baseline, mean IOP increased by 0.3+/-3.6 mmHg during the day and decreased by 0.8+/-3.8 mmHg during the night in the bimatoprost group, whereas there were increases of 1.43+/-2.6 mmHg and 0.14+/-3.2 mmHg in the LTFC group, respectively. CONCLUSIONS: Bimatoprost is not inferior to the LTFC in maintaining IOP at a controlled level during a 24-hour period in patients switched from the nonfixed combination of latanoprost and timolol.
Resumo:
MR imaging at 1.5T is considered the prime cross-sectional imaging modality for characterization of adrenal lesions. This is of utmost clinical importance, because non-functioning adenoma and adrenal metastasis are fairly common. The differentiation of these two tumor entities primarily is based on chemical shift imaging, also known as dual echo in-phase and opposed-phase imaging. At 3.0 T, the echo time pairs for in-phase and opposed-phase MR imaging need to be adjusted because the frequency difference is double that of standard 1.5T MR systems. Unfortunately, the acquisition of the first opposed-phase echo at 1.1 milliseconds and the first in-phase echo at 2.2 milliseconds within the same breath-hold requires unacceptably high receiver bandwidths at 3.0 T. Therefore, alternative data collection schemes have been implemented. This article reviews the current literature regarding adrenal imaging at 3.0 T with a focus on the chemical shift technique.
Resumo:
Over the past several decades, it has become apparent that anthropogenic activities have resulted in the large-scale enhancement of the levels of many trace gases throughout the troposphere. More recently, attention has been given to the transport pathway taken by these emissions as they are dispersed throughout the atmosphere. The transport pathway determines the physical characteristics of emissions plumes and therefore plays an important role in the chemical transformations that can occur downwind of source regions. For example, the production of ozone (O3) is strongly dependent upon the transport its precursors undergo. O3 can initially be formed within air masses while still over polluted source regions. These polluted air masses can experience continued O3 production or O3 destruction downwind, depending on the air mass's chemical and transport characteristics. At present, however, there are a number of uncertainties in the relationships between transport and O3 production in the North Atlantic lower free troposphere. The first phase of the study presented here used measurements made at the Pico Mountain observatory and model simulations to determine transport pathways for US emissions to the observatory. The Pico Mountain observatory was established in the summer of 2001 in order to address the need to understand the relationships between transport and O3 production. Measurements from the observatory were analyzed in conjunction with model simulations from the Lagrangian particle dispersion model (LPDM), FLEX-PART, in order to determine the transport pathway for events observed at the Pico Mountain observatory during July 2003. A total of 16 events were observed, 4 of which were analyzed in detail. The transport time for these 16 events varied from 4.5 to 7 days, while the transport altitudes over the ocean ranged from 2-8 km, but were typically less than 3 km. In three of the case studies, eastward advection and transport in a weak warm conveyor belt (WCB) airflow was responsible for the export of North American emissions into the FT, while transport in the FT was governed by easterly winds driven by the Azores/Bermuda High (ABH) and transient northerly lows. In the fourth case study, North American emissions were lofted to 6-8 km in a WCB before being entrained in the same cyclone's dry airstream and transported down to the observatory. The results of this study show that the lower marine FT may provide an important transport environment where O3 production may continue, in contrast to transport in the marine boundary layer, where O3 destruction is believed to dominate. The second phase of the study presented here focused on improving the analysis methods that are available with LPDMs. While LPDMs are popular and useful for the analysis of atmospheric trace gas measurements, identifying the transport pathway of emissions from their source to a receptor (the Pico Mountain observatory in our case) using the standard gridded model output, particularly during complex meteorological scenarios can be difficult can be difficult or impossible. The transport study in phase 1 was limited to only 1 month out of more than 3 years of available data and included only 4 case studies out of the 16 events specifically due to this confounding factor. The second phase of this study addressed this difficulty by presenting a method to clearly and easily identify the pathway taken by only those emissions that arrive at a receptor at a particular time, by combining the standard gridded output from forward (i.e., concentrations) and backward (i.e., residence time) LPDM simulations, greatly simplifying similar analyses. The ability of the method to successfully determine the source-to-receptor pathway, restoring this Lagrangian information that is lost when the data are gridded, is proven by comparing the pathway determined from this method with the particle trajectories from both the forward and backward models. A sample analysis is also presented, demonstrating that this method is more accurate and easier to use than existing methods using standard LPDM products. Finally, we discuss potential future work that would be possible by combining the backward LPDM simulation with gridded data from other sources (e.g., chemical transport models) to obtain a Lagrangian sampling of the air that will eventually arrive at a receptor.
Resumo:
Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel drums, and as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predict significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this project is to characterize and quantify the cement/bentonite skin effects spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used, which allows performing X-ray computed tomography (CT) periodically without interrupting a running experiment. A pre-saturated cylindrical MX-80 bentonite sample (1920 kg/m3 average wet density) is subjected to a confining pressure as a constant total pressure boundary condition. The infiltration of a hyperalkaline (pH 13.4), artificial OPC (ordinary Portland cement) pore water into the bentonite plug alters the mineral assemblage over time as an advancing reaction front. The related changes in X-ray attenuation values are related to changes in phase densities, porosity and local bulk density and are tracked over time periodically by non-destructive CT scans.
Resumo:
BACKGROUND Resistance to chemotherapy in lung adenocarcinoma remains a major obstacle. We examined the potential role of Octamer-binding transcription factor-4B (OCT4B) in enhancing sensitivity of lung adenocarcinoma cells to cisplatin. MATERIALS AND METHODS RNAi interference was used to examine the role of OCT4B in cisplatin-treated A549 cells. Cells were transfected with OCT4B siRNA prior to a 48-h cisplatin treatment. Propidium iodide (PI) and caspase-3 staining were used to determine cell viability and apoptosis. Cell-cycle analysis was performed to evaluate alterations in phase distribution. RESULTS OCT4B suppression in cells increased the number of non-viable, PI(+), and apoptotic, caspase-3(+) cells in the presence and absence of cisplatin treatment. Importantly, cisplatin treatment of OCT4B-suppressed cells resulted in a marked transition of cells from G0/G1 to G2/M phase. CONCLUSION Silencing of OCT4B confers sensitivity to cisplatin treatment in A549 cells via cell-cycle regulation, increased proliferation and enhancement of cisplatin-induced apoptosis. OCT4B clearly protects A549 cells from apoptosis.
Resumo:
Idiopathic or isolated clubfoot is a common orthopedic birth defect that affects approximately 135,000 children worldwide. It is characterized by equinus, varus and adductus deformities of the ankle and foot. Correction of clubfoot involves months of serial manipulations, castings and bracing, with surgical correction needed in forty percent of cases. Multifactorial etiology has been suggested in numerous studies with both environmental and genetic factors playing an etiologic role. Maternal smoking during pregnancy is the only common environmental factor that has consistently been shown to increase the risk for clubfoot. Moreover, a positive family history of clubfoot and maternal smoking increases the risk of clubfoot twenty fold. These findings suggest that genetic variation in smoking metabolism genes may increase susceptibility to clubfoot. Based on this reasoning, we interrogated eight candidate genes, chosen based on their involvement in phase 1 and 2 cigarette smoke metabolism. Twenty-two SNPs and two null alleles in eight genes (CYP1A1, CYP1A2, CYP1B1, CYP2A6, EPHX1, NAT2, GSTM1 and GSTT1) were genotyped in a dataset composed of nonHispanic white and Hispanic multiplex and simplex families. Only one SNP in CYP1A1, rs1048943, had significantly altered transmission in the aggregate and multiplex NHW datasets (p=0.003 and p=0.009). Perturbation of CYP1A1 by rs1048943 polymorphism causes an increase in the amount of harmful, adduct forming metabolic intermediates. A significant gene interaction between EPHX1 and NAT2 was also found (p=0.007). This interaction may affect the metabolism of harmful metabolic intermediates. Additionally, marginal interactions were found for other xenobiotic genes and these interactions may play a contributory role in clubfoot. Importantly, for CYP1A2, significant maternal (p=0.03; RR=1.24; 95% CI: 1.04-1.44) and fetal (p=0.01; RR=1.33; 95% CI: 1.13-1.54) genotypic effects were identified suggesting that both maternal and fetal genotypes impact normal limb development. No association was found for maternal smoking status and tobacco metabolism genes. Together, these results suggest that xenobiotic metabolism genes may play a contributory role in the etiology of clubfoot regardless of maternal smoking status and may impact foot development through perturbation of tobacco metabolic pathways.
Resumo:
The tropical region is an area of maximum humidity and serves as the major humidity source of the globe. Among other phenomena, it is governed by the so-called Inter-Tropical Convergence Zone (ITCZ) which is commonly defined by converging low-level winds or enhanced precipitation. Given its importance as a humidity source, we investigate the humidity fields in the tropics in different reanalysis data sets, deduce the climatology and variability and assess the relationship to the ITCZ. Therefore, a new analysis method of the specific humidity distribution is introduced which allows detecting the location of the humidity maximum, the strength and the meridional extent. The results show that the humidity maximum in boreal summer is strongly shifted northward over the warm pool/Asia Monsoon area and the Gulf of Mexico. These shifts go along with a peak in the strength in both areas; however, the extent shrinks over the warm pool/Asia Monsoon area, whereas it is wider over the Gulf of Mexico. In winter, such connections between location, strength and extent are not found. Still, a peak in strength is again identified over the Gulf of Mexico in boreal winter. The variability of the three characteristics is dominated by inter-annual signals in both seasons. The results using ERA-interim data suggest a positive trend in the Gulf of Mexico/Atlantic region from 1979 to 2010, showing an increased northward shift in the recent years. Although the trend is only weakly confirmed by the results using MERRA reanalysis data, it is in phase with a trend in hurricane activity�a possible hint of the importance of the new method on hurricanes. Furthermore, the position of the maximum humidity coincides with one of the ITCZ in most areas. One exception is the western and central Pacific, where the area is dominated by the double ITCZ in boreal winter. Nevertheless, the new method enables us to gain more insight into the humidity distribution, its variability and the relationship to ITCZ characteristics.
Resumo:
This paper reports on the results of a research project, on comparing one virtual collaborative environment with a first-person visual immersion (first-perspective interaction) and a second one where the user interacts through a sound-kinetic virtual representation of himself (avatar), as a stress-coping environment in real-life situations. Recent developments in coping research are proposing a shift from a trait-oriented approach of coping to a more situation-specific treatment. We defined as real-life situation a target-oriented situation that demands a complex coping skills inventory of high self-efficacy and internal or external "locus of control" strategies. The participants were 90 normal adults with healthy or impaired coping skills, 25-40 years of age, randomly spread across two groups. There was the same number of participants across groups and gender balance within groups. All two groups went through two phases. In Phase I, Solo, one participant was assessed using a three-stage assessment inspired by the transactional stress theory of Lazarus and the stress inoculation theory of Meichenbaum. In Phase I, each participant was given a coping skills measurement within the time course of various hypothetical stressful encounters performed in two different conditions and a control group. In Condition A, the participant was given a virtual stress assessment scenario relative to a first-person perspective (VRFP). In Condition B, the participant was given a virtual stress assessment scenario relative to a behaviorally realistic motion controlled avatar with sonic feedback (VRSA). In Condition C, the No Treatment Condition (NTC), the participant received just an interview. In Phase II, all three groups were mixed and exercised the same tasks but with two participants in pairs. The results showed that the VRSA group performed notably better in terms of cognitive appraisals, emotions and attributions than the other two groups in Phase I (VRSA, 92%; VRFP, 85%; NTC, 34%). In Phase II, the difference again favored the VRSA group against the other two. These results indicate that a virtual collaborative environment seems to be a consistent coping environment, tapping two classes of stress: (a) aversive or ambiguous situations, and (b) loss or failure situations in relation to the stress inoculation theory. In terms of coping behaviors, a distinction is made between self-directed and environment-directed strategies. A great advantage of the virtual collaborative environment with the behaviorally enhanced sound-kinetic avatar is the consideration of team coping intentions in different stages. Even if the aim is to tap transactional processes in real-life situations, it might be better to conduct research using a sound-kinetic avatar based collaborative environment than a virtual first-person perspective scenario alone. The VE consisted of two dual-processor PC systems, a video splitter, a digital camera and two stereoscopic CRT displays. The system was programmed in C++ and VRScape Immersive Cluster from VRCO, which created an artificial environment that encodes the user's motion from a video camera, targeted at the face of the users and physiological sensors attached to the body.
Resumo:
A subscale was developed to assess the quality of life of cancer patients with a life expectancy of six months or less. Phase I of this study identified the major concerns of 74 terminally ill cancer patients (19 with breast cancer, 19 with lung cancer, 18 with colorectal cancer, 9 with renal cell cancer, 9 with prostate cancer), 39 family caregivers, and 20 health care professionals. Patients interviewed were being treated at the University of Texas M. D. Anderson Cancer Center or at the Hospice at the Texas Medical Center in Houston. In Phase II, 120 patients (30 with breast cancer, 30 with lung cancer, 30 with colorectal cancer, 15 with prostate cancer, and 15 with renal cell cancer) rated the importance of these concerns for quality of life. Items retained for the subscale were rated as "extremely important" or "very important" by at least 60% of the sample and were reported as being applicable by at least two-thirds of the sample. The 61 concerns that were identified were formatted as a questionnaire for Phase III. In Phase III, 356 patients (89 with breast cancer, 88 with lung cancer, 88 with colorectal cancer, 44 with prostate cancer, and 47 with renal cell cancer) were interviewed to determine the subscale's reliability and sensitivity to change in clinical status. Both factor analysis and item response theory supported the inclusion of the same 35 items for the subscale. Internal consistency reliability was moderate to high for the subscale's domains: spiritual (0.87), existential (0.76), medical care (0.68), symptoms (0.67), social/family (0.66), and emotional (0.61). Test-retest correlation coefficients also were high for the domains: social/family (0.86), emotional (0.83), medical care (0.83), spiritual (0.75), existential (0.75), and symptoms (0.81).^ In addition, concurrent validity was supported by the high correlation between the subscale's symptom domain and symptom items from the European Organization for Research and Treatment of Cancer (EORTC) scale (r = 0.74). Patients' functional status was assessed with the Eastern Cooperative Oncology Group (ECOG) Performance status rating. When ECOG categories were compared to subscale domains, patients who scored lower in functional status had lower scores in the spiritual, existential, social/family, and emotional domains. Patients who scored lower in physical well-being had higher scores in the symptom domain. Patient scores in the medical care domain were similar for each ECOG category. The results of this study support the subscale's use in assessing quality of life and the outcomes of palliative treatment for cancer patients in their last six months of life. ^
Resumo:
The objective of this study was to determine if area measurements of pleural fluid on computed tomography (CT) reflect the actual pleural fluid volume (PEvol) as measured at autopsy, to establish a formula to estimate the volume of pleural effusion (PEest), and to test the accuracy and observer reliability of PEest.132 human cadavers, with pleural effusion were divided into phase 1 (n = 32) and phase 2 (n = 100). In phase 1, PEvol was compared to area measurements on axial (axA), sagittal (sagA), and coronal (corA) CT images. Linear regression analysis was used to create a formula to calculate PEest. In phase 2, intra-class correlation (ICC) was used to assess inter-reader reliability and determine the agreement between PEest and PEvol. PEvol correlated to a higher degree to axA (r s mean = 0.738; p < 0.001) than to sagA (r s mean = 0.679, p < 0.001) and corA (r s mean = 0.709; p < 0.001). PEest can be established with the following formula: axA × 0.1 = PEest. Mean difference between PEest and PEvol was less than 40 mL (ICC = 0.837-0.874; p < 0.001). Inter-reader reliability was higher between two experienced readers (ICC = 0.984-0.987; p < 0.001) than between an inexperienced reader and both experienced readers (ICC = 0.660-0.698; p < 0.001). Pleural effusions may be quantified in a rapid, reliable, and reasonably accurate fashion using single area measurements on CT.
Resumo:
Shallow ice cores were obtained from widely distributed sites across the West Antarctic ice sheet, as part of the United States portion of the International Trans-Antarctic Scientific Expedition (US ITASE) program. The US ITASE cores have been dated by annual-layer counting, primarily through the identification of summer peaks in non-sea-salt sulfate (nssSO(4)(2-)) concentration. Absolute dating accuracy of better than 2 years and relative dating accuracy better than 1 year is demonstrated by the identification of multiple volcanic marker horizons in each of the cores, Tambora, Indonesia (1815), being the most prominent. Independent validation is provided by the tracing of isochronal layers from site to site using high-frequency ice-penetrating radar observations, and by the timing of mid-winter warming events in stable-isotope ratios, which demonstrate significantly better than 1 year accuracy in the last 20 years. Dating precision to 1 month is demonstrated by the occurrence of summer nitrate peaks and stable-isotope ratios in phase with nssSO(4)(2-), and winter-time sea-salt peaks out of phase, with phase variation of < 1 month. Dating precision and accuracy are uniform with depth, for at least the last 100 years.
Resumo:
Annually dated ice cores from West and East Antarctica provide proxies for past changes in atmospheric circulation over Antarctica and portions of the Southern Ocean, temperature in coastal West and East Antarctica, and the frequency of South Polar penetration of El Nino events. During the period (AD) 1700-1850, atmospheric circulation over the Antarctic and at least portions of the Southern Hemisphere underwent a mode switch departing from the out-of-phase alternation of multi-decadal long phases of EOF1 and EOF2 modes of the 850 hPa field over the Southern Hemisphere (as defined in the recent record by Thompson and Wallace, 2000; Thompson and Solomon, 2002) that characterizes the remainder of the 700 year long record. From (AD) 1700 to 1850, lower-tropospheric circulation was replaced by in-phase behavior of the Amundsen Sea Low component of EOF2 and the East Antarctic High component of EOF1. During the first phase of the mode switch, both West and East Antarctic temperatures declined, potentially in response to the increased extent of sea ice surrounding both regions. At the end of the mode switch, West Antarctic coastal temperatures rose and East Antarctic coastal temperatures fell, respectively, to their second highest and lowest of the record. Polar penetration of El Nino events increased during the mode switch. The onset of the AD 1700-1850 mode switch coincides with the extreme state of the Maunder Minimum in solar variability. Late 20th-century West Antarctic coastal temperatures are the highest in the record period, and East Antarctic coastal temperatures close to the lowest. Since AD 1700, extratropical regions of the Southern Hemisphere have experienced significant climate variability coincident with changes in both solar variability and greenhouse gases.
Resumo:
We present a reconstruction of Antarctic mean surface temperatures over the past two centuries based on water stable isotope records from high-resolution, precisely dated ice cores. Both instrumental and reconstructed temperatures indicate large interannual to decadal scale variability, with the dominant pattern being anti-phase anomalies between the main Antarctic continent and the Antarctic Peninsula region. Comparative analysis of the instrumental Southern Hemisphere (SH) mean temperature record and the reconstruction suggests that at longer timescales, temperatures over the Antarctic continent vary in phase with the SH mean. Our reconstruction suggests that Antarctic temperatures have increased by about 0.2 degrees C since the late nineteenth century. The variability and the long-term trends are strongly modulated by the SH Annular Mode in the atmospheric circulation.