990 resultados para Immune tolerance
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
The artificial dsRNA polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a potent adjuvant candidate for vaccination, as it strongly drives cell-mediated immunity. However, because of its effects on non-immune bystander cells, poly(I:C) administration may bear danger for the development of autoimmune diseases. Thus poly(I:C) should be applied in the lowest dose possible. We investigated microspheres carrying surface-assembled poly(I:C) as a two-in-one adjuvant formulation to stimulate maturation of monocyte-derived dendritic cells (MoDCs). Negatively charged polystyrene microspheres were equipped with a poly(ethylene glycol) corona through electrostatically driven surface assembly of a library of polycationic poly(l-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres in an aqueous poly(I:C) solution. Surface-assembled poly(I:C) exhibited a strongly enhanced efficacy to stimulate maturation of MoDCs by up to two orders of magnitude, as compared to free poly(I:C). Multiple phagocytosis events were the key factor to enhance the efficacy. The cytokine secretion pattern of MoDCs after exposure to surface-assembled poly(I:C) differed from that of free poly(I:C), while their ability to stimulate T cell proliferation was similar. Overall, phagocytic signaling plays an important role in defining the resulting immune response to such two-in-one adjuvant formulations.
Resumo:
Abstract The main thesis topic relates to the 'molecular mechanisms of penicillin-induced bacterial death. Indeed, bacteria have developed two principal mechanisms to escape the killing effect of ß-lactam antibiotics: resistance and tolerance. Resistant bacteria are characterized by their ability to grow in the presence of drug concentrations higher than the one inhibiting the growth of susceptible members of the same species. Hence, resistant bacteria have an increased minimal inhibitory concentration (MIC) of the drug. Nevertheless, when exposed to antibiotic concentrations exceeding their new MIC, resistant bacteria remain sensitive to the antibiotic killing effect. In contrast, tolerant bacteria have an unchanged MIC. However, they have a considerably increased ability to survive drug-induced killing, even at concentrations exceeding their MIC by several orders of magnitude. In other words, in the presence of the antibiotic, tolerant bacteria become persister cells which stop growing but are not killed. In the present thesis, it is shown that the survival phenotype of a tolerant Streptococcus gordonii strain depends on two components belonging to sugar metabolism pathways. First, the transcription factor CcpA which mediates a global regulatory mechanism allowing bacteria to utilize the most efficient sugar source for their growth. We show that the inactivation of the ccpA gene leads to a partial loss of penicillin tolerance both in vitro and in a rat model of experimental endocarditis. Second, the Enzyme I of the phosphotransferase system which is involved in the uptake and phosphorylation of sugars. Here, we -show that a single nucleotide mutation in ptsI, the gene encoding the Enzyme I, is sufficient to confer a fully tolerant phenotype in S. gordonii both in vivo and in vivo. The mutation results in a radical proline to arginine substitution in the C-terminal domain of the protein, probably leading to a decrease in its homodimerization and subsequent activity. Taken together our results prove that tolerance is a global survival mechanism linked to sugar metabolism. We hypothesize that, in the presence of the antibiotic, the already altered metabolic processes of the tolerant strain are completely inactivated. Hence, bacteria may enter in a dormant state and become insensitive to the bactericidal effect of ß-lactams, which depends on actively dividing cells. This thesis manuscript also contains two other side-projects. The first one establishes that the ability to form a biofilm is not a requisite for the successful establishment of endocarditis due to S. gordonii. The second one characterizes the S. gordonii a-phosphoglucomutase gene, and shows that its inactivation results in a loss of in vitro fitness and in vivo virulence. Résumé Le sujet principal de cette thèse concerne les mécanismes moléculaires de la mort bactérienne induite par la pénicilline. En effet, les bactéries ont développé deux mécanismes principaux pour échapper à l'effet bactéricide des ß-lactamines : la résistance et la tolérance. Les bactéries résistantes sont caractérisées par leur capacité de croître en présence de concentration d'antibiotiques plus élevées que celles inhibant la croissance des organismes sensibles de la même espèce. Les bactéries résistantes ont donc une augmentation de leur concentration minimale inhibitrice (CMI) à l'antibiotique. Néanmoins, quand elles sont exposées à des concentrations dépassant leur nouvelle CMI, elles restent sensibles à l'effet bactéricide. Au contraire, les bactéries tolérantes ont une CMI inchangée. Toutefois, elles ont une très importante capacité à survivre à l'effet bactéricide des ß-lactamines, ceci même à des concentrations excédant leur CMI de plusieurs ordres de grandeur. En d'autres termes, en présence de l'antibiotique, les bactéries tolérantes deviennent des cellules persistantes qui arrêtent leur croissance mais ne sont pas tuées. Dans la présente thèse, il est montré que le phénotype de survie d'un Streptococcus gordonii tolérant dépend de deux composants appartenant aux voies du métabolisme des sucres. Premièrement, le facteur de transcription CcpA qui contrôle un système global de régulation permettant à la bactérie d'utiliser les sources de sucre les plus efficaces pour sa croissance. Il est montré que l'inactivation du gène ccpA résulte en la perte partielle de la tolérance à la pénicilline aussi bien in vitro que dans un modèle d'endocardite expérimentale chez le rat. Deuxièmement, l'Enzyme I du système de phosphotransfert impliqué dans l'import et la phosphorylation des sucres. Nous montrons qu'une mutation ponctuelle d'un nucléotide dans ptsl, le gène codant pour l'Enzyme I, suffit à complètement conférer un phénotype tolérant chez S. gordonii aussi bien in vitro qu'in vivo. La mutation induit la substitution radicale d'une proline en une arginine dans le domaine C-terminal de la protéine, résultant probablement en une diminution de sa capacité d'homodimérisation et donc d'activité. Dans leur ensemble, nos résultats prouvent que la tolérance est un mécanisme global de survie lié au métabolisme des sucres. Nous présentons l'hypothèse que, en présence de l'antibiotique, les processus métaboliques déjà altérés de la souche tolérante deviennent complètement inactifs. En conséquence, les bactéries entreraient dans un état dormant nonréplicatif, devenant ainsi insensibles à l'effet bactéricide des ß-lactamines qui nécessite des cellules en cours de division active. Le manuscrit de cette thèse contient également deux projets secondaires. Le premier montre que la capacité de former un biofilm n'est pas un prérequis pour le succès de l'initiation de l'endocardite à S. gordonii. Le second caractérise le gène de l'a-phosphoglucomutase de S. gordonii et montre que son inactivation résulte en une perte de fitness in vitro et de virulence in vivo.
Resumo:
Infections with Leishmania parasites of the Leishmania Viannia subgenus give rise to both localized cutaneous (CL), and metastatic leishmaniasis. Metastasizing disease forms including disseminated (DCL) and mutocutaneous (MCL) leishmaniasis result from parasitic dissemination and lesion formation at sites distal to infection and have increased inflammatory responses. The presence of Leishmania RNA virus (LRV) in L. guyanensis parasites contributes to the exacerbation of disease and impacts inflammatory responses via activation of TLR3 by the viral dsRNA. In this study we investigated other innate immune response adaptor protein modulators and demonstrated that both MyD88 and TLR9 played a crucial role in the development of Th1-dependent healing responses against L. guyanensis parasites regardless of their LRV status. The absence of MyD88- or TLR9-dependent signaling pathways resulted in increased Th2 associated cytokines (IL-4 and IL-13), which was correlated with low transcript levels of IL-12p40. The reliance of IL-12 was further confirmed in IL12AB-/- mice, which were completely susceptible to infection. Protection to L. guyanensis infection driven by MyD88- and TLR9-dependent immune responses arises independently to those induced due to high LRV burden within the parasites.
Resumo:
Adenovirus serotype 5 (Ad5) vectors and specific neutralizing antibodies (NAbs) generate immune complexes (ICs) which are potent inducers of dendritic cell (DC) maturation. Here we show that ICs generated with rare Ad vector serotypes, such as Ad26 and Ad35, which are lead candidates in HIV vaccine development, are poor inducers of DC maturation and that their potency in inducing DC maturation strongly correlated with the number of Toll-like receptor 9 (TLR9)-agonist motifs present in the Ad vector's genome. In addition, we showed that antihexon but not antifiber antibodies are responsible for the induction of Ad IC-mediated DC maturation.
Resumo:
BACKGROUND & AIM: Immune-modulating nutritional formula containing arginine, omega-3 fatty acids and nucleotides has been demonstrated to decrease complications and length of stay in surgical patients. This study aims at assessing the impact of immune-modulating formula on hospital costs in gastrointestinal cancer surgical patients in Switzerland. METHOD: Based on a previously published meta-analysis, the relative risks of overall and infectious complications with immune-modulating versus standard nutrition formula were computed. Swiss hospital costs of patients undergoing gastrointestinal cancer surgery were retrieved. A method was developed to compute the patients' severity level, not taking into account the complications from the surgery. Incremental costs of complications were computed for both treatment groups, and sensitivity analyses were carried out. RESULTS: Relative risk of complications with pre-, peri- and post-operative use of immune-modulating formula was 0.69 (95%CI 0.58-0.83), 0.62 (95%CI 0.53-0.73) and 0.73 (95%CI 0.35-0.96) respectively. The estimated average contribution of complications to the cost of stay was CHF 14,949 (euro10,901) per patient (95%CI 10,712-19,186), independently of case's severity. Based on this cost, immune-modulating nutritional support decreased costs of hospital stay by CHF 1638 to CHF 2488 per patient (euro1195-euro1814). Net hospital savings were present for baseline complications rates as low as 5%. CONCLUSION: Immune-modulating nutritional solution is a cost-saving intervention in gastrointestinal cancer patients. The additional cost of immune-modulating formula are more than offset by savings associated with decreased treatment of complications.
Resumo:
Mouse mammary tumor virus (MMTV) has developed a strategy of exploitation of the immune response. It infects dendritic cells and B cells and requires this infection to establish an efficient chronic infection. This allows transmission of infection to the mammary gland, production in milk and infection of the next generation via lactation. The elaborate strategy developed by MMTV utilizes several key elements of the normal immune response. Starting with the infection and activation of dendritic cells and B cells leading to the expression of a viral superantigen followed by professional superantigen-mediated priming of naive polyclonal T cells by dendritic cells and induction of superantigen-mediated T cell B cell collaboration results in long-lasting germinal center formation and production of long-lived B cells that can later carry the virus to the mammary gland epithelium. Later in life it can induce transformation of mammary gland epithelium by integrating close to proto-oncogenes leading to their overexpression. Genes encoding proteins of the Wnt-pathway are preferential targets. This review will put these effects in the context of a normal immune response and summarize important facts on MMTV biology.
Resumo:
Plasmodium vivax circumsporozoite (CS) protein is a leading malaria vaccine candidate. We describe the characterization of specific immune responses induced in 21 malaria-naive volunteers vaccinated with long synthetic peptides derived from the CS protein formulated in Montanide ISA 720. Both antibody- and cell-mediated immune responses were analyzed. Antibodies were predominantly of IgG1 and IgG3 isotypes, recognized parasite proteins on the immunofluorescent antibody test, and partially blocked sporozoite invasion of hepatoma cell lines in vitro. Peripheral blood mononuclear cells from most volunteers (94%) showed IFN-γ production in vitro upon stimulation with both long signal peptide and short peptides containing CD8+ T-cell epitopes. The relatively limited sample size did not allow conclusions about HLA associations with the immune responses observed. In summary, the inherent safety and tolerability together with strong antibody responses, invasion blocking activity, and the IFN-γ production induced by these vaccine candidates warrants further testing in a phase II clinical trial.
Resumo:
Lymphatic vessels transport fluid, antigens, and immune cells to the lymph nodes to orchestrate adaptive immunity and maintain peripheral tolerance. Lymphangiogenesis has been associated with inflammation, cancer metastasis, autoimmunity, tolerance and transplant rejection, and thus, targeted lymphatic ablation is a potential therapeutic strategy for treating or preventing such events. Here we define conditions that lead to specific and local closure of the lymphatic vasculature using photodynamic therapy (PDT). Lymphatic-specific PDT was performed by irradiation of the photosensitizer verteporfin that effectively accumulates within collecting lymphatic vessels after local intradermal injection. We found that anti-lymphatic PDT induced necrosis of endothelial cells and pericytes, which preceded the functional occlusion of lymphatic collectors. This was specific to lymphatic vessels at low verteporfin dose, while higher doses also affected local blood vessels. In contrast, light dose (fluence) did not affect blood vessel perfusion, but did affect regeneration time of occluded lymphatic vessels. Lymphatic vessels eventually regenerated by recanalization of blocked collectors, with a characteristic hyperplasia of peri-lymphatic smooth muscle cells. The restoration of lymphatic function occurred with minimal remodeling of non-lymphatic tissue. Thus, anti-lymphatic PDT allows control of lymphatic ablation and regeneration by alteration of light fluence and photosensitizer dose.
Resumo:
We have studied ischemic tolerance induced by the serine protease thrombin in two different models of experimental ischemia. In organotypic hippocampal slice cultures, we demonstrate that incubation with low doses of thrombin protects neurons against a subsequent severe oxygen and glucose deprivation. L-JNKI1, a highly specific c-jun N-terminal kinase (JNK) inhibitor, and a second specific JNK inhibitor, SP600125, prevented thrombin preconditioning (TPC). We also show that the exposure to thrombin increases the level of phosphorylated c-jun, the major substrate of JNK. TPC, in vivo, leads to significantly smaller lesion sizes after a 30-min middle cerebral artery occlusion (MCAo), and the preconditioned mice were better off in the three tests used to evaluate functional recovery. In accordance with in vitro results, TPC in vivo was prevented by administration of L-JNKI1, supporting a role for JNK in TPC. These results, from two different TPC models and with two distinct JNK inhibitors, show that JNK is likely to be involved in TPC.
Resumo:
CTLA-4 is a critical negative regulator of T cell responses and CTLA-4-deficient (CTLA-4(-/-)) mice die of a lymphproliferative disease. Nevertheless, RAG-2-deficient mice reconstituted with a mixture of CTLA-4(-/-) and normal (CTLA-4(+/+)) bone marrow survive in the absence of any signs of disease, although 50% of their T cells do not express CTLA-4. Using such mixed chimeras, we analyzed the role of CTLA-4 in specific T cell responses to lymphocytic choriomeningitis virus, Leishmania major and mouse mammary tumor virus, which cause acute, chronic and persistent infections, respectively. The populations of antigen-specific CTLA-4(-/-)CD4(+) and CTLA-4(-/-)CD8(+) T cells became activated, expanded and contracted indistinguishably from CTLA-4(+/+)CD4(+) and CTLA-4(+/+)CD8(+) T cells after infection with all three pathogens. Thus, CTLA-4 is not involved in the down-regulation of specific T cell responses and peripheral deletion in a T cell-autonomous fashion.