918 resultados para Image pre-processing
Resumo:
In the last decade, Object Based Image Analysis (OBIA) has been accepted as an effective method for processing high spatial resolution multiband images. This image analysis method is an approach that starts with the segmentation of the image. Image segmentation in general is a procedure to partition an image into homogenous groups (segments). In practice, visual interpretation is often used to assess the quality of segmentation and the analysis relies on the experience of an analyst. In an effort to address the issue, in this study, we evaluate several seed selection strategies for an automatic image segmentation methodology based on a seeded region growing-merging approach. In order to evaluate the segmentation quality, segments were subjected to spatial autocorrelation analysis using Moran's I index and intra-segment variance analysis. We apply the algorithm to image segmentation using an aerial multiband image.
Resumo:
Current fusion devices consist of multiple diagnostics and hundreds or even thousands of signals. This situation forces on multiple occasions to use distributed data acquisition systems as the best approach. In this type of distributed systems, one of the most important issues is the synchronization between signals, so that it is possible to have a temporal correlation as accurate as possible between the acquired samples of all channels. In last decades, many fusion devices use different types of video cameras to provide inside views of the vessel during operations and to monitor plasma behavior. The synchronization between each video frame and the rest of the different signals acquired from any other diagnostics is essential in order to know correctly the plasma evolution, since it is possible to analyze jointly all the information having accurate knowledge of their temporal correlation. The developed system described in this paper allows timestamping image frames in a real-time acquisition and processing system using 1588 clock distribution. The system has been implemented using FPGA based devices together with a 1588 synchronized timing card (see Fig.1). The solution is based on a previous system [1] that allows image acquisition and real-time image processing based on PXIe technology. This architecture is fully compatible with the ITER Fast Controllers [2] and offers integration with EPICS to control and monitor the entire system. However, this set-up is not able to timestamp the frames acquired since the frame grabber module does not present any type of timing input (IRIG-B, GPS, PTP). To solve this lack, an IEEE1588 PXI timing device its used to provide an accurate way to synchronize distributed data acquisition systems using the Precision Time Protocol (PTP) IEEE 1588 2008 standard. This local timing device can be connected to a master clock device for global synchronization. The timing device has a buffer timestamp for each PXI trigger line and requires tha- a software application assigns each frame the corresponding timestamp. The previous action is critical and cannot be achieved if the frame rate is high. To solve this problem, it has been designed a solution that distributes the clock from the IEEE 1588 timing card to all FlexRIO devices [3]. This solution uses two PXI trigger lines that provide the capacity to assign timestamps to every frame acquired and register events by hardware in a deterministic way. The system provides a solution for timestamping frames to synchronize them with the rest of the different signals.
Resumo:
In this work we review some earlier distributed algorithms developed by the authors and collaborators, which are based on two different approaches, namely, distributed moment estimation and distributed stochastic approximations. We show applications of these algorithms on image compression, linear classification and stochastic optimal control. In all cases, the benefit of cooperation is clear: even when the nodes have access to small portions of the data, by exchanging their estimates, they achieve the same performance as that of a centralized architecture, which would gather all the data from all the nodes.
Resumo:
Esta tesis se ha desarrollado en el contexto del proyecto Cajal Blue Brain, una iniciativa europea dedicada al estudio del cerebro. Uno de los objetivos de esta iniciativa es desarrollar nuevos métodos y nuevas tecnologías que simplifiquen el análisis de datos en el campo neurocientífico. El presente trabajo se ha centrado en diseñar herramientas que combinen información proveniente de distintos canales sensoriales con el fin de acelerar la interacción y análisis de imágenes neurocientíficas. En concreto se estudiará la posibilidad de combinar información visual con información háptica. Las espinas dendríticas son pequeñas protuberancias que recubren la superficie dendrítica de muchas neuronas del cerebro. A día de hoy, se cree que tienen un papel clave en la transmisión de señales neuronales. Motivo por el cual, el interés por parte de la comunidad científica por estas estructuras ha ido en aumento a medida que las técnicas de adquisición de imágenes mejoraban hasta alcanzar una calidad suficiente para analizar dichas estructuras. A menudo, los neurocientíficos utilizan técnicas de microscopía con luz para obtener los datos que les permitan analizar estructuras neuronales tales como neuronas, dendritas y espinas dendríticas. A pesar de que estas técnicas ofrezcan ciertas ventajas frente a su equivalente electrónico, las técnicas basadas en luz permiten una menor resolución. En particular, estructuras pequeñas como las espinas dendríticas pueden capturarse de forma incorrecta en las imágenes obtenidas, impidiendo su análisis. En este trabajo, se presenta una nueva técnica, que permite editar imágenes volumétricas, mediante un dispositivo háptico, con el fin de reconstruir de los cuellos de las espinas dendríticas. Con este objetivo, en un primer momento se desarrolló un algoritmo que proporciona retroalimentación háptica en datos volumétricos, completando la información que provine del canal visual. Dicho algoritmo de renderizado háptico permite a los usuarios tocar y percibir una isosuperficie en el volumen de datos. El algoritmo asegura un renderizado robusto y eficiente. Se utiliza un método basado en las técnicas de “marching tetrahedra” para la extracción local de una isosuperficie continua, lineal y definida por intervalos. La robustez deriva tanto de una etapa de detección de colisiones continua de la isosuperficie extraída, como del uso de técnicas eficientes de renderizado basadas en un proxy puntual. El método de “marching tetrahedra” propuesto garantiza que la topología de la isosuperficie extraída coincida con la topología de una isosuperficie equivalente determinada utilizando una interpolación trilineal. Además, con el objetivo de mejorar la coherencia entre la información háptica y la información visual, el algoritmo de renderizado háptico calcula un segundo proxy en la isosuperficie pintada en la pantalla. En este trabajo se demuestra experimentalmente las mejoras en, primero, la etapa de extracción de isosuperficie, segundo, la robustez a la hora de mantener el proxy en la isosuperficie deseada y finalmente la eficiencia del algoritmo. En segundo lugar, a partir del algoritmo de renderizado háptico propuesto, se desarrolló un procedimiento, en cuatro etapas, para la reconstrucción de espinas dendríticas. Este procedimiento, se puede integrar en los cauces de segmentación automática y semiautomática existentes como una etapa de pre-proceso previa. El procedimiento está diseñando para que tanto la navegación como el proceso de edición en sí mismo estén controlados utilizando un dispositivo háptico. Se han diseñado dos experimentos para evaluar esta técnica. El primero evalúa la aportación de la retroalimentación háptica y el segundo se centra en evaluar la idoneidad del uso de un háptico como dispositivo de entrada. En ambos casos, los resultados demuestran que nuestro procedimiento mejora la precisión de la reconstrucción. En este trabajo se describen también dos casos de uso de nuestro procedimiento en el ámbito de la neurociencia: el primero aplicado a neuronas situadas en la corteza cerebral humana y el segundo aplicado a espinas dendríticas situadas a lo largo de neuronas piramidales de la corteza del cerebro de una rata. Por último, presentamos el programa, Neuro Haptic Editor, desarrollado a lo largo de esta tesis junto con los diferentes algoritmos ya mencionados. ABSTRACT This thesis took place within the Cajal Blue Brain project, a European initiative dedicated to the study of the brain. One of the main goals of this project is the development of new methods and technologies simplifying data analysis in neuroscience. This thesis focused on the development of tools combining information originating from distinct sensory channels with the aim of accelerating both the interaction with neuroscience images and their analysis. In concrete terms, the objective is to study the possibility of combining visual information with haptic information. Dendritic spines are thin protrusions that cover the dendritic surface of numerous neurons in the brain and whose function seems to play a key role in neural circuits. The interest of the neuroscience community toward those structures kept increasing as and when acquisition methods improved, eventually to the point that the produced datasets enabled their analysis. Quite often, neuroscientists use light microscopy techniques to produce the dataset that will allow them to analyse neuronal structures such as neurons, dendrites and dendritic spines. While offering some advantages compared to their electronic counterpart, light microscopy techniques achieve lower resolutions. Particularly, small structures such as dendritic spines might suffer from a very low level of fluorescence in the final dataset, preventing further analysis. This thesis introduces a new technique enabling the edition of volumetric datasets in order to recreate dendritic spine necks using a haptic device. In order to fulfil this objective, we first presented an algorithm to provide haptic feedback directly from volumetric datasets, as an aid to regular visualization. The haptic rendering algorithm lets users perceive isosurfaces in volumetric datasets, and it relies on several design features that ensure a robust and efficient rendering. A marching tetrahedra approach enables the dynamic extraction of a piecewise linear continuous isosurface. Robustness is derived using a Continuous Collision Detection step coupled with acknowledged proxy-based rendering methods over the extracted isosurface. The introduced marching tetrahedra approach guarantees that the extracted isosurface will match the topology of an equivalent isosurface computed using trilinear interpolation. The proposed haptic rendering algorithm improves the coherence between haptic and visual cues computing a second proxy on the isosurface displayed on screen. Three experiments demonstrate the improvements on the isosurface extraction stage as well as the robustness and the efficiency of the complete algorithm. We then introduce our four-steps procedure for the complete reconstruction of dendritic spines. Based on our haptic rendering algorithm, this procedure is intended to work as an image processing stage before the automatic segmentation step giving the final representation of the dendritic spines. The procedure is designed to allow both the navigation and the volume image editing to be carried out using a haptic device. We evaluated our procedure through two experiments. The first experiment concerns the benefits of the force feedback and the second checks the suitability of the use of a haptic device as input. In both cases, the results shows that the procedure improves the editing accuracy. We also report two concrete cases where our procedure was employed in the neuroscience field, the first one concerning dendritic spines in the human cortex, the second one referring to an ongoing experiment studying dendritic spines along dendrites of mouse cortical pyramidal neurons. Finally, we present the software program, Neuro Haptic Editor, that was built along the development of the different algorithms implemented during this thesis, and used by neuroscientists to use our procedure.
Resumo:
La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.
Resumo:
The conserved CDC5 family of Myb-related proteins performs an essential function in cell cycle control at G2/M. Although c-Myb and many Myb-related proteins act as transcription factors, herein, we implicate CDC5 proteins in pre-mRNA splicing. Mammalian CDC5 colocalizes with pre-mRNA splicing factors in the nuclei of mammalian cells, associates with core components of the splicing machinery in nuclear extracts, and interacts with the spliceosome throughout the splicing reaction in vitro. Furthermore, genetic depletion of the homolog of CDC5 in Saccharomyces cerevisiae, CEF1, blocks the first step of pre-mRNA processing in vivo. These data provide evidence that eukaryotic cells require CDC5 proteins for pre-mRNA splicing.
Resumo:
Three small nucleolar RNAs (snoRNAs), E1, E2 and E3, have been described that have unique sequences and interact directly with unique segments of pre-rRNA in vivo. In this report, injection of antisense oligodeoxynucleotides into Xenopus laevis oocytes was used to target the specific degradation of these snoRNAs. Specific disruptions of pre-rRNA processing were then observed, which were reversed by injection of the corresponding in vitro-synthesized snoRNA. Degradation of each of these three snoRNAs produced a unique rRNA maturation phenotype. E1 RNA depletion shut down 18 rRNA formation, without overaccumulation of 20S pre-rRNA. After E2 RNA degradation, production of 18S rRNA and 36S pre-rRNA stopped, and 38S pre-rRNA accumulated, without overaccumulation of 20S pre-rRNA. E3 RNA depletion induced the accumulation of 36S pre-rRNA. This suggests that each of these snoRNAs plays a different role in pre-rRNA processing and indicates that E1 and E2 RNAs are essential for 18S rRNA formation. The available data support the proposal that these snoRNAs are at least involved in pre-rRNA processing at the following pre-rRNA cleavage sites: E1 at the 5′ end and E2 at the 3′ end of 18S rRNA, and E3 at or near the 5′ end of 5.8S rRNA.
Resumo:
We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem–loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.
Resumo:
Efficient 3′-end processing of cell cycle-regulated mammalian histone premessenger RNAs (pre-mRNAs) requires an upstream stem–loop and a histone downstream element (HDE) that base pairs with the U7 small ribonuclearprotein. Insertions between these elements have two effects: the site of cleavage moves in concert with the HDE and processing efficiency declines. We used Xenopus oocytes to ask whether compensatory length insertions in the human U7 RNA could restore the fidelity and efficiency of processing of mouse histone insertion pre-mRNAs. An insertion of 5 nt into U7 RNA that extends its complementary to the HDE compensated for both defects in processing of a 5-nt insertion substrate; a noncomplementary insertion into U7 did not. Yet, the noncomplementary insertion mutant U7 was shown to be active on insertion substrates further mutated to allow base pairing. Our results suggest that the histone pre-mRNA becomes rigidified upstream of its HDE, allowing the bound U7 small ribonucleoprotein to measure from the HDE to the cleavage site. Such a mechanism may be common to other RNA measuring systems. To our knowledge, this is the first demonstration of length suppression in an RNA processing system.
Resumo:
This report documents the error rate in a commercially distributed subset of the IMAGE Consortium mouse cDNA clone collection. After isolation of plasmid DNA from 1189 bacterial stock cultures, only 62.2% were uncontaminated and contained cDNA inserts that had significant sequence identity to published data for the ordered clones. An agarose gel electrophoresis pre-screening strategy identified 361 stock cultures that appeared to contain two or more plasmid species. Isolation of individual colonies from these stocks demonstrated that 7.1% of the original 1189 stocks contained both a correct and an incorrect plasmid. 5.9% of the original 1189 stocks contained multiple, distinct, incorrect plasmids, indicating the likelihood of multiple contaminating events. While only 739 of the stocks purchased contained the desired cDNA clone, agarose gel pre-screening, colony isolation and similarity searching of dbEST allowed for the identification of an additional 420 clones that would have otherwise been discarded. Considering the high error rate in this subset of the IMAGE cDNA clone set, the use of sequence verified clones for cDNA microarray construction is warranted. When this is not possible, pre-screening non-sequence verified clones with agarose gel electrophoresis provides an inexpensive and efficient method to eliminate contaminated clones from the probe set.
Resumo:
Vision extracts useful information from images. Reconstructing the three-dimensional structure of our environment and recognizing the objects that populate it are among the most important functions of our visual system. Computer vision researchers study the computational principles of vision and aim at designing algorithms that reproduce these functions. Vision is difficult: the same scene may give rise to very different images depending on illumination and viewpoint. Typically, an astronomical number of hypotheses exist that in principle have to be analyzed to infer a correct scene description. Moreover, image information might be extracted at different levels of spatial and logical resolution dependent on the image processing task. Knowledge of the world allows the visual system to limit the amount of ambiguity and to greatly simplify visual computations. We discuss how simple properties of the world are captured by the Gestalt rules of grouping, how the visual system may learn and organize models of objects for recognition, and how one may control the complexity of the description that the visual system computes.
Resumo:
Rapid progress in effective methods to image brain functions has revolutionized neuroscience. It is now possible to study noninvasively in humans neural processes that were previously only accessible in experimental animals and in brain-injured patients. In this endeavor, positron emission tomography has been the leader, but the superconducting quantum interference device-based magnetoencephalography (MEG) is gaining a firm role, too. With the advent of instruments covering the whole scalp, MEG, typically with 5-mm spatial and 1-ms temporal resolution, allows neuroscientists to track cortical functions accurately in time and space. We present five representative examples of recent MEG studies in our laboratory that demonstrate the usefulness of whole-head magnetoencephalography in investigations of spatiotemporal dynamics of cortical signal processing.
Resumo:
The visual responses of neurons in the cerebral cortex were first adequately characterized in the 1960s by D. H. Hubel and T. N. Wiesel [(1962) J. Physiol. (London) 160, 106-154; (1968) J. Physiol. (London) 195, 215-243] using qualitative analyses based on simple geometric visual targets. Over the past 30 years, it has become common to consider the properties of these neurons by attempting to make formal descriptions of these transformations they execute on the visual image. Most such models have their roots in linear-systems approaches pioneered in the retina by C. Enroth-Cugell and J. R. Robson [(1966) J. Physiol. (London) 187, 517-552], but it is clear that purely linear models of cortical neurons are inadequate. We present two related models: one designed to account for the responses of simple cells in primary visual cortex (V1) and one designed to account for the responses of pattern direction selective cells in MT (or V5), an extrastriate visual area thought to be involved in the analysis of visual motion. These models share a common structure that operates in the same way on different kinds of input, and instantiate the widely held view that computational strategies are similar throughout the cerebral cortex. Implementations of these models for Macintosh microcomputers are available and can be used to explore the models' properties.
Resumo:
In this paper we discuss some main image processing techniques in order to propose a classification based upon the output these methods provide. Because despite a particular image analysis technique can be supervised or unsupervised, and can allow or not the existence of fuzzy information at some stage, each technique has been usually designed to focus on a specific objective, and their outputs are in fact different according to each objective. Thus, they are in fact different methods. But due to the essential relationship between them they are quite often confused. In particular, this paper pursues a clarification of the differences between image segmentation and edge detection, among other image processing techniques.
Resumo:
Póster presentado en SPIE Photonics Europe, Brussels, 16-19 April 2012.