1000 resultados para Imágenes literarias
Resumo:
Sign.: A-Z8, Aa-Ii8, Kk1
Resumo:
Sign.: A-Z8, Aa-Ee8
Resumo:
Sign.: A-Z8, Aa-Ff8, Gg2
Resumo:
Port. con grab. xil.
Resumo:
Hay dos ejemplares encuadernados con: CANCIONERO amoroso (Lluís Guarner/1062) y (Carreres/574).
Resumo:
El objetivo del presente Proyecto Fin de Carrera es la elaboración de cartografía base de la zona del Valle de Tamanart y la elaboración de un documento cartográfico que muestre la distribución de minerales en ella. Se pretende poder facilitar el reconocimiento del área arqueológica de estudio desde la perspectiva del análisis físico para correlacionar el material de superficie con la aparición de petroglifos o restos arqueológicos. En la investigación arqueológica de países emergentes es difícil contar con cartografía previa de la zona de interés en la realización de las campañas de campo. Se pretende plantear una metodología general de creación de cartografía básica y cartografía temática de distribución de minerales en superficie mediante técnicas de teledetección utilizando imágenes de satélite que sean gratuitas a través de la red. El proyecto consta de dos partes: 1. Confección de la cartografía base: - Primero: se realiza una breve descripción documentada de los aspectos físicos globales (geomorfológicos, geológicos, hidrológicos…) del área de estudio, a través de los documentos que puedan existir en Internet con acceso libre y con la información aportada por el grupo de investigación. - Segundo: Para poder obtener la base cartográfica se realiza el tratamiento de datos de las escenas de los satélites. Las escenas gratuitas disponibles han sido dos imágenes de la misma zona, una del satélite Landsat7 y otra del satélite Landsat5, descargadas del servidor GLOVIS (USGS Global Visualization Viewer). Confección de la cartografía temática: - Selección de la zona de estudio en las imágenes de teledetección ya tratadas en la primera parte del proyecto. - Clasificación de la imagen para usos de suelo. - Edición de la cartografía temática. El resultado del proyecto son la cartografía base y de coberturas superficiales de distribución de minerales sobre la que se ubican los yacimientos arqueológicos de la zona, yacimientos y paneles que fueron georreferenciados en la campaña de campo 2013. El PFC se realiza en colaboración con el Departamento de Prehistoria de la UNED, responsables de la investigación arqueológica en la zona de estudio.
Resumo:
Sign.: *8, 2*4, A-Z8, 2A-2G8, 2H4
Resumo:
En este trabajo se presenta un procedimiento para la generación de cartografía vegetal basada en la clasificación de imágenes de satélite aplicable a los ecosistemas tropicales. Esta técnica constituye una alternativa eficaz para generar mapas detallados y actualizados en estos ecosistemas.
Resumo:
Con el presente proyecto se ha pretendido realizar una clasificación de los distintos usos del suelo en la provincia de Toledo y de forma más precisa en el municipio de Talavera de la Reina. Se ha profundizado en los conocimientos sobre teledetección adquiridos durante los años de estudio de la titulación de Ingeniero Técnico en Topografía, cubriendo las aplicaciones más importantes. Para ello, en primer lugar se debe recopilar la información, en este caso se han utilizado dos imágenes Landsat 8 - OLI (19/4/2013 - 9/8/2013) y con el software adecuado se realiza la clasificación dividiendo el suelo en los usos más frecuentes de dicha zona. El resultado obtenido nos muestra los distintos usos del suelo en el año de estudio, 2013, y exponer el potencial de las técnicas de teledetección, para así poder interpretar y llegar a conocer temas de gran relevancia como el aprovechamiento del terreno o el desarrollo del sector agrícola en la zona. El procedimiento consta de la elaboración de los correspondientes documentos cartográficos de usos del suelo y vegetación para el año 2013 a partir de las imágenes de satélite.
Resumo:
Esta tesis doctoral está encuadrada dentro del marco general de la ingeniería biomédica aplicada al tratamiento de las enfermedades cardiovasculares, enfermedades que provocan alrededor de 1.9 millones (40%) de muertes al año en la Unión Europea. En este contexto surge el proyecto europeo SCATh-Smart Catheterization, cuyo objetivo principal es mejorar los procedimientos de cateterismo aórtico introduciendo nuevas tecnologías de planificación y navegación quirúrgica y minimizando el uso de fluoroscopía. En particular, esta tesis aborda el modelado y diagnóstico de aneurismas aórticos abdominales (AAA) y del trombo intraluminal (TIL), allí donde esté presente, así como la segmentación de estas estructuras en imágenes preoperatorias de RM. Los modelos físicos específicos del paciente, construidos a partir de imágenes médicas preoperatorias, tienen múltiples usos, que van desde la evaluación preoperatoria de estructuras anatómicas a la planificación quirúrgica para el guiado de catéteres. En el diagnóstico y tratamiento de AAA, los modelos físicos son útiles a la hora de evaluar diversas variables biomecánicas y fisiológicas de las estructuras vasculares. Existen múltiples técnicas que requieren de la generación de modelos físicos que representen la anatomía vascular. Una de las principales aplicaciones de los modelos físicos es el análisis de elementos finitos (FE). Las simulaciones de FE para AAA pueden ser específicas para el paciente y permiten modelar estados de estrés complejos, incluyendo los efectos provocados por el TIL. La aplicación de métodos numéricos de análisis tiene como requisito previo la generación de una malla computacional que representa la geometría de interés mediante un conjunto de elementos poliédricos, siendo los hexaédricos los que presentan mejores resultados. En las estructuras vasculares, generar mallas hexaédricas es un proceso especialmente exigente debido a la compleja anatomía 3D ramificada. La mayoría de los AAA se encuentran situados en la bifurcación de la arteria aorta en las arterias iliacas y es necesario modelar de manera fiel dicha bifurcación. En el caso de que la sangre se estanque en el aneurisma provocando un TIL, éste forma una estructura adyacente a la pared aórtica. De este modo, el contorno externo del TIL es el mismo que el contorno interno de la pared, por lo que las mallas resultantes deben reflejar esta particularidad, lo que se denomina como "mallas conformadas". El fin último de este trabajo es modelar las estructuras vasculares de modo que proporcionen nuevas herramientas para un mejor diagnóstico clínico, facilitando medidas de riesgo de rotura de la arteria, presión sistólica o diastólica, etc. Por tanto, el primer objetivo de esta tesis es diseñar un método novedoso y robusto para generar mallas hexaédricas tanto de la pared aórtica como del trombo. Para la identificación de estas estructuras se utilizan imágenes de resonancia magnética (RM). Deben mantenerse sus propiedades de adyacencia utilizando elementos de alta calidad, prestando especial atención al modelado de la bifurcación y a que sean adecuadas para el análisis de FE. El método tiene en cuenta la evolución de la línea central del vaso en el espacio tridimensional y genera la malla directamente a partir de las imágenes segmentadas, sin necesidad de reconstruir superficies triangulares. Con el fin de reducir la intervención del usuario en el proceso de generación de las mallas, es también objetivo de esta tesis desarrollar un método de segmentación semiautomática de las distintas estructuras de interés. Las principales contribuciones de esta tesis doctoral son: 1. El diseño, implementación y evaluación de un algoritmo de generación de mallas hexaédricas conformadas de la pared y el TIL a partir de los contornos segmentados en imágenes de RM. Se ha llevado a cabo una evaluación de calidad que determine su aplicabilidad a métodos de FE. Los resultados demuestran que el algoritmo desarrollado genera mallas conformadas de alta calidad incluso en la región de la bifurcación, que son adecuadas para su uso en métodos de análisis de FE. 2. El diseño, implementación y evaluación de un método de segmentación automático de las estructuras de interés. La luz arterial se segmenta de manera semiautomática utilizando un software disponible a partir de imágenes de RM con contraste. Los resultados de este proceso sirven de inicialización para la segmentación automática de las caras interna y externa de la pared aórtica utilizando métodos basado en modelos de textura y forma a partir de imágenes de RM sin contraste. Los resultados demuestran que el algoritmo desarrollado proporciona segmentaciones fieles de las distintas estructuras de interés. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como aportación para futuros avances en la generación de modelos físicos de geometrías biológicas. ABSTRACT The frame of this PhD Thesis is the biomedical engineering applied to the treatment of cardiovascular diseases, which cause around 1.9 million deaths per year in the European Union and suppose about 40% of deaths per year. In this context appears the European project SCATh-Smart Catheterization. The main objective of this project is creating a platform which improves the navigation of catheters in aortic catheterization minimizing the use of fluoroscopy. In the framework of this project, the specific field of this PhD Thesis is the diagnosis and modeling of abdominal aortic aneurysm (AAAs) and the intraluminal thrombus (ILT) whenever it is present. Patient-specific physical models built from preoperative imaging are becoming increasingly important in the area of minimally invasive surgery. These models can be employed for different purposes, such as the preoperatory evaluation of anatomic structures or the surgical planning for catheter guidance. In the specific case of AAA diagnosis and treatment, physical models are especially useful for evaluating pressures over vascular structures. There are multiple techniques that require the generation of physical models which represent the target anatomy. Finite element (FE) analysis is one the principal applications for physical models. FE simulations for AAA may be patient-specific and allow modeling biomechanical and physiological variables including those produced by ILT, and also the segmentation of those anatomical structures in preoperative MR images. Applying numeric methods requires the generation of a proper computational mesh. These meshes represent the patient anatomy using a set of polyhedral elements, with hexahedral elements providing better results. In the specific case of vascular structures, generating hexahedral meshes is a challenging task due to the complex 3D branching anatomy. Each patient’s aneurysm is unique, characterized by its location and shape, and must be accurately represented for subsequent analyses to be meaningful. Most AAAs are located in the region where the aorta bifurcates into the iliac arteries and it is necessary to model this bifurcation precisely and reliably. If blood stagnates in the aneurysm and forms an ILT, it exists as a conforming structure with the aortic wall, i.e. the ILT’s outer contour is the same as the wall’s inner contour. Therefore, resulting meshes must also be conforming. The main objective of this PhD Thesis is designing a novel and robust method for generating conforming hexahedral meshes for the aortic wall and the thrombus. These meshes are built using largely high-quality elements, especially at the bifurcation, that are suitable for FE analysis of tissue stresses. The method accounts for the evolution of the vessel’s centerline which may develop outside a single plane, and generates the mesh directly from segmented images without the requirement to reconstruct triangular surfaces. In order to reduce the user intervention in the mesh generation process is also a goal of this PhD. Thesis to develop a semiautomatic segmentation method for the structures of interest. The segmentation is performed from magnetic resonance image (MRI) sequences that have tuned to provide high contrast for the arterial tissue against the surrounding soft tissue, so that we determine the required information reliably. The main contributions of this PhD Thesis are: 1. The design, implementation and evaluation of an algorithm for generating hexahedral conforming meshes of the arterial wall and the ILT from the segmented contours. A quality inspection has been applied to the meshes in order to determine their suitability for FE methods. Results show that the developed algorithm generates high quality conforming hexahedral meshes even at the bifurcation region. Thus, these meshes are suitable for FE analysis. 2. The design, implementation and evaluation of a semiautomatic segmentation method for the structures of interest. The lumen is segmented in a semiautomatic way from contrast filled MRI using an available software. The results obtained from this process are used to initialize the automatic segmentation of the internal and external faces of the aortic wall. These segmentations are performed by methods based on texture and shape models from MRI with no contrast. The results show that the algorithm provides faithful segmentations of the structures of interest requiring minimal user intervention. In conclusion, the work undertaken in this PhD. Thesis verifies the investigation hypotheses. It intends to serve as basis for future physical model generation of proper biological anatomies used by numerical methods.
Resumo:
Desde hace tiempo ha habido mucho interés en la automatización de todo tipo de tareas en las que la intervención humana es esencial para que sean completadas con éxito. Esto es de especial interés si además se ciertas tareas que pueden ser perfectamente reproducibles y, o bien requieren mucha formación, o bien consumen mucho tiempo. Este proyecto está dirigido a la búsqueda de métodos para automatizar la anotación de imágenes médicas. En concreto, se centra en el apartado de delimitación de las regiones de interés (ROIs) en imágenes de tipo PET siendo éstas usadas con frecuencia junto con las imágenes de tipo CT en el campo de oncología para delinear volúmenes afectados por cáncer. Se pretende con esto ayudar a los hospitales a organizar y estructurar las imágenes de sus pacientes y relacionarlas con las notas clínicas. Esto es lo que llamaremos el proceso de anotación de imágenes y la integración con la anotación de notas clínicas respectivamente. En este documento nos vamos a centrar en describir cuáles eran los objetivos iniciales, los pasos dados para su consecución y las dificultades encontradas durante el proceso. De todas las técnicas existentes en la literatura, se han elegido 4 técnicas de segmentación, 2 de ellas probadas en pacientes reales y las otras 2 probadas solo en phantoms según la literatura. En nuestro caso, las pruebas, se han realizado en imágenes PET de 6 pacientes reales diagnosticados de cáncer. Los resultados han sido analizados y presentados. ---ABSTRACT---For a long period of time, there has been an increasing interest in automation of tasks where human intervention is needed in order to succeed. This interest is even greater if those tasks must be solved by qualifed specialists in the area and the task is reproducible or if the task is too time consuming. The main objective of this project is to find methods which can help to automate medical image annotation processes. In our specific case, we are willing to delineate regions of interest (ROIs) in PET images which are frequently used simultaneaously ith CT images in oncology to determine those volumes that are afected by cancer. With this process we want to help hospitals organize and have from their patient studies and to relate these images to the corpus annotations. We may call this the image annotation process and the integration with the corpus annotation respectively. In this document we are going to concentrate in the description of the initial objectives, the steps we had to go through and the di�culties we had to face during this process. From all existing techniques in the literature, 4 segmentation techniques have been chosen, 2 of them were tested in real patients and the other 2 were tested using phantoms according to the literature. In our case, the tests have been done using PET images from 6 real patients diagnosed with cancer. The results have been analyzed and presented.
Resumo:
Sign.: []2, A-P8, Q6
Resumo:
Sign.: A-P8