873 resultados para IRON SULFIDE NANOSTRUCTURES
Resumo:
Recently, it has been proposed that there are two type Ia supernova progenitors: short-lived and long-lived. On the basis of this idea, we develop a theory of a unified mechanism for the formation of the bimodal radial distribution of iron and oxygen in the Galactic disc. The underlying cause for the formation of the fine structure of the radial abundance pattern is the influence of the spiral arms, specifically the combined effect of the corotation resonance and turbulent diffusion. From our modelling, we conclude that in order to explain the bimodal radial distributions simultaneously for oxygen and iron and to obtain approximately equal total iron output from different types of supernovae, the mean ejected iron mass per supernova event should be the same as quoted in the literature if the maximum mass of stars, which eject heavy elements, is 50 M(circle dot). For the upper mass limit of 70 M(circle dot), the production of iron by a type II supernova explosion should increase by about 1.5 times.
Resumo:
Objective: To evaluate the transepithelial transport of sodium, glucose, potassium, and water and the mRNA level of the sodium-glucose cotransporter (SGLT1) and the facilitated sugar transporter (GLUT2) in the small intestine of iron-deficient rats. Methods: After 6 wk of receiving diets with low or normal iron content, rats (Wistar-EPM) were subjected to two experiments: 1) evaluation of the transepithelial transport of sodium, glucose, potassium, and water by an ""in vivo"" experimental model of intestinal perfusion and 2) determination of relative SGLT1 and GLUT2 mRNA levels in the proximal, intermediate, and distal portions of the small intestine by the northern blotting technique. Results: Hemoglobin and hepatic iron levels were statistically lower in the anemic rats. The mean transepithelial transports of sodium (-33.0 mu Eq . min(-1) . cm(-1)), glucose (426.0 mu M . min(-1) . cm(-1)), and water (0.4 mu L . min(-1) . cm(-1)) in the small intestine of the anemic rats were significantly lower than in the control group (349.1 mu Eq . min(-1) cm(-1), 842.6 mu M . min(-1) . cm(-1), and 4.3 mu l . min(-1) cm(-1), respectively, P < 0.05). The transepithelial transport of potassium was similar for both groups. The relative SGLT1 mRNA levels of the anemic rats in the intermediate (1.796 +/- 0.659 AU) and distal (1.901 +/- 0.766 AU) segments were significantly higher than the values for the control rats (intermediate 1.262 +/- 0.450 AU, distal 1.244 +/- 0.407 AU). No significant difference was observed for the relative SLGT1 mRNA levels in the proximal segment or for the GLUT2 mRNA levels in all segments. Conclusion: Iron deficiency decreases the absorption of glucose, sodium, and water and increases SGLT1 mRNA in the intermediate and distal segments of the small intestine of rats. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H(2)O(2) and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.
Synthesis, characterization and catalytic evaluation of cubic ordered mesoporous iron-silicon oxides
Resumo:
Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS). N(2) sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe(2+) present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples` average pore diameter was around 12.0 nm and BET specific surface area was of 680 m(2) g(-1). Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 degrees C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1. Fe(2)O(3) and Fe/FDU-1 prepared with higher pH of 2 and 3.5. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
[1] Iron is hypothesized to be an important micronutrient for ocean biota, thus modulating carbon dioxide uptake by the ocean biological pump. Studies have assumed that atmospheric deposition of iron to the open ocean is predominantly from mineral aerosols. For the first time we model the source, transport, and deposition of iron from combustion sources. Iron is produced in small quantities during fossil fuel burning, incinerator use, and biomass burning. The sources of combustion iron are concentrated in the industrialized regions and biomass burning regions, largely in the tropics. Model results suggest that combustion iron can represent up to 50% of the total iron deposited, but over open ocean regions it is usually less than 5% of the total iron, with the highest values (< 30%) close to the East Asian continent in the North Pacific. For ocean biogeochemistry the bioavailability of the iron is important, and this is often estimated by the fraction which is soluble ( Fe(II)). Previous studies have argued that atmospheric processing of the relatively insoluble Fe(III) occurs to make it more soluble ( Fe( II)). Modeled estimates of soluble iron amounts based solely on atmospheric processing as simulated here cannot match the variability in daily averaged in situ concentration measurements in Korea, which is located close to both combustion and dust sources. The best match to the observations is that there are substantial direct emissions of soluble iron from combustion processes. If we assume observed soluble Fe/black carbon ratios in Korea are representative of the whole globe, we obtain the result that deposition of soluble iron from combustion contributes 20-100% of the soluble iron deposition over many ocean regions. This implies that more work should be done refining the emissions and deposition of combustion sources of soluble iron globally.
Resumo:
A statistical data analysis methodology was developed to evaluate the field emission properties of many samples of copper oxide nanostructured field emitters. This analysis was largely done in terms of Seppen-Katamuki (SK) charts, field strength and emission current. Some physical and mathematical models were derived to describe the effect of small electric field perturbations in the Fowler-Nordheim (F-N) equation, and then to explain the trend of the data represented in the SK charts. The field enhancement factor and the emission area parameters showed to be very sensitive to variations in the electric field for most of the samples. We have found that the anode-cathode distance is critical in the field emission characterization of samples having a non-rigid nanostructure. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The magnetic properties of Co nanostructures and a Co monolayer on W(001) have been studied in the framework of density functional theory. Different geometries such as planar and three-dimensional clusters have been considered, with cluster sizes varying between 2 and 13 atoms. The calculations were performed using the real-space linear muffin-tin orbital method (RS-LMTO-ASA). With respect to the stability of the magnetic state, we predict an antiferromagnetic (AFM) structure for the ground state of the planar Co clusters and a ferromagnetic (FM) state for the three-dimensional clusters. For the three-dimensional clusters, one of the AFM arrangements leads to frustration due to the competing FM and AFM exchange interactions between different atoms in the cluster, and gives rise to a non-collinear state with energy close to that of the FM ground state. The relative role of the Co-Co and Co-W exchange interactions is also investigated. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The metastable phase diagram of the BCC-based ordering equilibria in the Fe-Al-Mo system has been calculated via a truncated cluster expansion, through the combination of Full-Potential-Linear augmented Plane Wave (FP-LAPW) electronic structure calculations and of Cluster Variation Method (CVM) thermodynamic calculations in the irregular tetrahedron approximation. Four isothermal sections at 1750 K, 2000 K, 2250 K and 2500 K are calculated and correlated with recently published experimental data on the system. The results confirm that the critical temperature for the order-disorder equilibrium between Fe(3)Al-D0(3) and FeAl-B2 is increased by Mo additions, while the critical temperature for the FeAl-B2/A2 equilibrium is kept approximately invariant with increasing Mo contents. The stabilization of the Al-rich A2 phase in equilibrium with overstoichiometric B2-(Fe,Mo)Al is also consistent with the attribution of the A2 structure to the tau(2) phase, stable at high temperatures in overstoichiometric B2-FeAl. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Five zones along a transect of 180 m were selected for study on the Island of Pai Matos (Sao Paulo, Brazil). Four of the zones are colonised by vascular plants (Spartina SP, Laguncularia LG, Avicennia AV and Rhizophora RH) and were denominated soils, and the other zone, which lacks vegetation, was denominated sediment (SD). The geochemical conditions differed significantly in soils and sediment and also at different depths. The soils were oxic (Eh > 350 mV) or suboxic (Eh: 350-100 mV) at the surface and anoxic (Eh < 100 mV) at depth, whereas in the sediment anoxic conditions prevailed at all depths, but with a lower concentration of sulphides in the pore water and pyrite in the solid fraction. Under these geochemical conditions Fe is retained in the soils, while the Mn tends to be mobilized and lost. The most abundant form of iron oxyhydroxide was lepidocrocite (mean concentration for all sites and depths, 45 +/- 19 mu mol g(-1)), followed by goethite (30 19 mu mol g(-1))and ferrihydrite (19 +/- 11 mu mol g(-1)),with significant differences among the mean concentrations. There was a significant decrease with depth in all the types of Fe oxyhydroxides measured, particularly the poorly crystalline forms. The pyrite fraction was an important component of the free Fe pool (non-silicate Fe) in all soils as well as in the sediment, especially below 20 cm depth (mean concentration for all sites and depths, 60 +/- 54 mu mol CI). Furthermore, the mean concentration of Fe-pyrite for all sites and depths was higher than that obtained for any of the three Fe oxyhydroxides measured. The Fe-AVS was a minor fraction, indicating that the high concentrations of dissolved Fe in the soils in the upper area of the transect result from the oxidation of Fe sulphides during low tide. Mossbauer spectroscopy also revealed that most of the Fe (III) was associated with silicates, in this case nontronite. The presence of crystals of pyrite associated with phyllosilicates in samples from the upper layer of the soils may indicate that pyritization of this form of Fe(III) is more rapid than usually reported for ocean bed sediments. The sequential extraction of Mn did not reveal any clearly dominant fraction, with the Mn-carbonate fraction being the most prevalent, followed by exchangeable Mn and oxides of Mn, whereas pyrite-Mn and Mn associated with crystalline Fe-oxides were present at significantly lower concentrations. The high concentration of dissolved Mn found in the soils in the lower part of the transect is consistent with the fact that the solubility is determined by the carbonate fraction. Unlike for Fe, in the soils in the higher zone, which are subject to intense drainage during low tide, there was loss of Mn, as reflected by the concentration of total Mn. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Ancient potteries usually are made of the local clay material, which contains relatively high concentration of iron. The powdered samples are usually quite black, due to magnetite, and, although they can be used for thermoluminescene (TL) dating, it is easiest to obtain better TL reading when clearest natural or pre-treated sample is used. For electron paramagnetic resonance (EPR) measurements, the huge signal due to iron spin-spin interaction, promotes an intense interference overlapping any other signal in this range. Sample dating is obtained by dividing the radiation dose, determined by the concentration of paramagnetic species generated by irradiation, by the natural dose so as a consequence, EPR dating cannot be used, since iron signal do not depend on radiation dose. In some cases, the density separation method using hydrated solution of sodium polytungstate [Na(G)(H(2)W(12)O(40))center dot H(2)O] becomes useful. However, the sodium polytungstate is very expensive in Brazil: hence an alternative method for eliminating this interference is proposed. A chemical process to eliminate about 90% of magnetite was developed. A sample of powdered ancient pottery was treated in a mixture (3:1:1) of HCI, HNO(3) and H(2)O(2) for 4 h. After that, it was washed several times in distilled water to remove all acid matrixes. The original black sample becomes somewhat clearer. The resulting material was analyzed by plasma mass spectrometry (ICP-MS), with the result that the iron content is reduced by a factor of about 9. In EPR measurements a non-treated natural ceramic sample shows a broad spin-spin interaction signal, the chemically treated sample presents a narrow signal in g= 2.00 region, possibly due to a radical of (SiO(3))(3-), mixed with signal of remaining iron [M. lkeya, New Applications of Electron Spin Resonance, World Scientific, Singapore, 1993, p. 285]. This signal increases in intensity under -gamma-irradiation. However, still due to iron influence, the additive method yielded too old age-value. Since annealing at 300 degrees C, Toyoda and Ikeya IS. Toyoda, M. Ikeya, Geochem. J. 25 (1991) 427-445] states that E `(1)-signal with maximum intensity is obtained, while annealing at 400 degrees C E`(1)-signal is completely eliminated, the subtraction of the second one from 300 degrees C heat-treated sample isolate E`(1)-like signal. Since this is radiation dose-dependent, we show that now EPR dating becomes possible. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A systematic study was made of the synthesis of V(2)O(5)center dot nH(2)O nanostructures, whose morphologies, crystal structure, and amount of water molecules between the layered structures were regulated by strictly controlling the hydrothermal treatment variables. The synthesis involved a direct hydrothermal reaction between V(2)O(5) and H(2)O(2), without the addition of organic surfactant or inorganic ions. The experimental results indicate that high purity nanostructures can be obtained using this simple and clean synthetic route. Oil the basis of a study of hydrothermal treatment variables such as reaction temperature and time, X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) revealed that it was possible to obtain nanoribbons of the V(2)O(5)center dot nH(2)O monoclinic phase and nanowires or nanorods of the V(2)O(5)center dot nH(2)O orthorhombic phase. Thermal gravimetric analysis (TGA) shows also that the water content in the Structure call be controlled at appropriate hydrothermal conditions. Concerning the oxidation state of the vanadium atoms of as-obtained samples, a mixed-valence state composed of V(4+) and V(5+) was observed ill the V(2)O(5)center dot nH(2)O monoclinic phase, while the valence of the vanadium atoms was preferentially 5+ in the V(2)O(5)center dot nH(2)O orthorhombic phase. The X-ray absorption near-edge structure (XANES) results also indicated that the local structure of vanadium possessed a higher degree of symmetry in the V(2)O(5)center dot nH(2)O monoclinic phase.
Resumo:
Lateral ordering of InGaAs quantum dots on the GaAs (001) surface has been achieved in earlier reports, resembling an anisotropic pattern. In this work, we present a method of breaking the anisotropy of ordered quantum dots (QDs) by changing the growth environment. We show experimentally that using As(2) molecules instead of As(4) as a background flux is efficient in controlling the diffusion of distant Ga adatoms to make it possible to produce isotropic ordering of InGaAs QDs over GaAs (001). The control of the lateral ordering of QDs under As(2) flux has enabled us to improve their optical properties. Our results are consistent with reported experimental and theoretical data for structure and diffusion on the GaAs surface.
Resumo:
This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This review deals with surface-enhancved Raman scattering (SERS) employing Langmuir-Blodgett (LB) films, which serve as model systems for developing theoretical and experimental studies to elucidate the SERS effect. In addition, LB films have be used as integral parts of molecular architectures for SERS-active substrates. On the other hand, SERS and surface-enhaced resonant Raman scattering (SERRS) have allowed various properties of LB films to be investigated, especially those associated with molecular-level interactions. In the paper, emphasis is placed on single molecule detection (SMD), where the target molecule is diluted on an LB matrix of spectral silent material (low Raman cross section). The perspectives and challenges for combining SERS and LB films are also discussed.
Resumo:
Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.