747 resultados para IONIC LIQUID ELECTROLYTE
Resumo:
Ionic liquids, in specially those based on the 1,3-dialkylimidazolium cation, have been receiving special attention in differents areas due to their interesting physical-chemical properties. In this work, some aspects of their structure (in both solid and liquid state) and its relationships with their properties are reviewed.
Resumo:
This article reports the phase behavior determi- nation of a system forming reverse liquid crystals and the formation of novel disperse systems in the two-phase region. The studied system is formed by water, cyclohexane, and Pluronic L-121, an amphiphilic block copolymer considered of special interest due to its aggregation and structural proper- ties. This system forms reverse cubic (I2) and reverse hexagonal (H2) phases at high polymer concentrations. These reverse phases are of particular interest since in the two-phase region, stable high internal phase reverse emulsions can be formed. The characterization of the I2 and H2 phases and of the derived gel emulsions was performed with small-angle X-ray scattering (SAXS) and rheometry, and the influence of temperature and water content was studied. TheH2 phase experimented a thermal transition to an I2 phase when temperature was increased, which presented an Fd3m structure. All samples showed a strong shear thinning behavior from low shear rates. The elasticmodulus (G0) in the I2 phase was around 1 order of magnitude higher than in theH2 phase. G0 was predominantly higher than the viscousmodulus (G00). In the gel emulsions,G0 was nearly frequency-independent, indicating their gel type nature. Contrarily to water-in-oil (W/O) normal emulsions, in W/I2 and W/H2 gel emulsions, G0, the complex viscosity (|η*|), and the yield stress (τ0) decreased with increasing water content, since the highly viscous microstructure of the con- tinuous phase was responsible for the high viscosity and elastic behavior of the emulsions, instead of the volumefraction of dispersed phase and droplet size. A rheological analysis, in which the cooperative flow theory, the soft glass rheology model, and the slip plane model were analyzed and compared, was performed to obtain one single model that could describe the non-Maxwellian behavior of both reverse phases and highly concentrated emulsions and to characterize their microstructure with the rheological properties.
Resumo:
A rapid and sensitive method is described for the determination of clofentezine residues in apple, papaya, mango and orange. The procedure is based on the extraction of the sample with a hexane:ethyl acetate mixture (1:1, v/v) and liquid chromatographic analysis using UV detection. Mean recoveries from 4 replicates of fortified fruit samples ranged from 81% to 96%, with coefficients of variation from 8.9% to 12.5%. The detection and quantification limits of the method were of 0.05 and 0.1 mg kg-1, respectively.
Resumo:
Two high performance liquid chromatography (HPLC) methods for the quantitative determination of indinavir sulfate were tested, validated and statistically compared. Assays were carried out using as mobile phases mixtures of dibutylammonium phosphate buffer pH 6.5 and acetonitrile (55:45) at 1 mL/min or citrate buffer pH 5 and acetonitrile (60:40) at 1 mL/min, an octylsilane column (RP-8) and a UV spectrophotometric detector at 260 nm. Both methods showed good sensitivity, linearity, precision and accuracy. The statistical analysis using the t-student test for the determination of indinavir sulfate raw material and capsules indicated no statistically significant difference between the two methods.
Resumo:
The liquid-liquid extraction with the low temperature partition technique was developed for the analysis of four pyrethroids in water by CG. Using a factorial design the extraction technique was optimised evaluating the effect of the variables ionic strength, contact time and proportion between sample and solvent volumes. The validation parameters sensitivity, precision, accuracy and detection and quantification limits were evaluated. The LOD and LOQ of the method varied from 1.1 to 3.2 µg L-1 and 2.7 to 9.5 µg L-1, respectively.
Resumo:
A rapid HPLC analytical method was developed and validated for the determination of the N-phenylpiperazine derivative LASSBio-579in plasma rat. Analyses were performed using a C18 column and elution with 20 mM sodium dihydrogen phosphate monohydrate - methanol. The analyte was monitored using a photodiode array detector (257 nm). Calibration curves in spiked plasma were linear over the concentration range of 0.3-8 mg/mL with determination coefficient > 0.99. The lower limit of quantification was 0.3 mg/mL. The applicability of the HPLC method for pharmacokinetic studies was tested using plasma samples obtained after administration of LASSBio-579 to Wistar rats, showing the specificity of the method.
Resumo:
A Berner impactor was used to collect size-differentiated aerosol samples from March to August 2003 in the city of Aveiro, on the Portuguese west coast. The samples were analysed for the main water-soluble ion species. The average concentration of sulphate, nitrate, chloride and ammonium was 6.38, 3.09, 1.67 and 1.27 µg m-3, respectively. The results show that SO4(2-) and NH4+ were consistently present in the fine fraction < 1 µm, which represents, on average, 72 and 89% of their total atmospheric concentrations, respectively. The NO3-particles were concentrated in the coarse size. Chloride presented the characteristic coarse mode for marine aerosols. During some spring/summer events, an ammonium surplus was observed (NH4+/SO4(2-) molar ratios > 2), possibly due to greater availability of ammonia coming from agricultural activities or from the neighbouring chemical industrial complex. During the remaining periods, the aerosol was found to be somewhat acidic and predominantly in the form of ammonium bisulphate (NH4+/SO4(2-) molar ratios = 0.5-1.25). Samples collected under a major or exclusive influence of maritime air masses were essentially constituted by coarse particles with enrichment in sea salt, while for air masses of continental origin the contribution of water-soluble ionic species in the fine mode was more pronounced.
Resumo:
Työn tarkoituksena oli löytää kapillaarielektroforeesimenetelmä (CE), joka soveltuisi metallien neste-nesteuutossa käytettävien orgaanisten uuttofaasien koostumuksen analysointiin. Kapillaarielektroforeesissa käytetyn elektrolyyttiliuoksen analyytti-kohtaista optimointia ei tässä työssä tehty, vaan liikkeelle lähdettiin fenoleille tarkoitetulla menetelmällä. Tarkasteltavia uuttoreagenssiryhmiä olivat hydroksi-oksiimit sekä fosfiinihappo- ja fosforihappopohjaiset reagenssit. Tutkittavia kaupallisia laimentimia olivat Orfom SX 11 ja Shellsol D70. Lisäksi tutkittiin kahta modifiointiainetta, TOPOa (tri-n-oktyylifosfiinioksidi) ja TXIB:tä (2,2,4-trimetyyli-1,3-pentaanidiolidi-isobutyraatti). Työssä tavoiteltiin kapillaarielektroforeesin hyötyjä erityisesti hydrometallurgisessa teollisuudessa. Suurimpana hyötynä ennakoitiin mahdollisuus analysoida suuria molekyylejä, kuten uuttoreagenssi-metallikomplekseja, joita ei pystytä analysoimaan kaasukromatografilla (GC). Näytteet voidaan myös analysoida ilman hidasta ja usein ei-kvantitatiivista derivatisointia. Kirjallisuudesta ei löytynyt aiempia artikkeleita CE:n soveltamisesta kyseisille aiheille. Kapillaarielektroforeesianalyyseissa pystyttiin esimerkiksi havaitsemaan hydroksi-oksiimin kuparikompleksi orgaanisessa faasissa. Seulonta-ajoissa yleisenä ongelmana oli kuitenkin tulosten heikko toistettavuus. Kapillaari-elektro-foreesi-menetelmä tarjoaa selvästi mahdollisuuksia tulevaisuudessa, mutta vielä sillä ei päästy luotettavaan toistoon sähkökentän häiriöiden ja elektrolyyttiliuoksen riittämättömän optimoinnin vuoksi. Lisäksi teollisissa olosuhteissa käytetyille autenttisille hydroksioksiimi- ja fosfiinihapponäytteille tehtiin perinteisiä kaasukromatografia-analyysejä, joiden perusteella voitiin nähdä uuttofaasin koostumuksen muuttuneen prosessissa. Hapettuminen sekä eri hydrolyysireaktiot ovat tärkeimmät syyt reagenssien ja laimentimien muuttumiselle. Näitä hajoamistuotteita ei tässä työssä onnistuttu analysoimaan kapillaarielektroforeesilla.
Resumo:
Liquid-liquid extraction is a mass transfer process for recovering the desired components from the liquid streams by contacting it to non-soluble liquid solvent. Literature part of this thesis deals with theory of the liquid-liquid extraction and the main steps of the extraction process design. The experimental part of this thesis investigates the extraction of organic acids from aqueous solution. The aim was to find the optimal solvent for recovering the organic acids from aqueous solutions. The other objective was to test the selected solvent in pilot scale with packed column and compare the effectiveness of the structured and the random packing, the effect of dispersed phase selection and the effect of packing material wettability properties. Experiments showed that selected solvent works well with dilute organic acid solutions. The random packing proved to be more efficient than the structured packing due to higher hold-up of the dispersed phase. Dispersing the phase that is present in larger volume proved to more efficient. With the random packing the material that was wetted by the dispersed phase was more efficient due to higher hold-up of the dispersed phase. According the literature, the behavior is usually opposite.
Resumo:
The microbiological bioassay, UV-spectrophotometry and HPLC methods for assaying gatifloxacin in tablets were compared. Validation parameters such as linearity, precision, accuracy, limit of detection and limit of quantitation were determined. Beer's law was obeyed in the ranges 4.0-14.0 μg/mL for HPLC and UV-spectrophotometric method, and 4.0-16.0 μg/mL for bioassay. All methods were reliable within acceptable limits for antibiotic pharmaceutical preparations being accurate, precise and reproducible. The bioassay and HPLC are more specific than UV-spectrophotometric analysis. The application of each method as a routine analysis should be investigated considering cost, simplicity, equipment, solvents, speed, and application to large or small workloads.
Resumo:
In this work carrier-facilitated transport of mercury(II) against its concentration gradient from aqueous 0.04 M hydrochloric acid solution across a liquid membrane containing isopropyl 2-[(isopropoxycarbothiolyl)disulfanyl]ethane thioate (IIDE) as the mobile carrier in chloroform has been investigated. Sodium thiocyanate solution (1.6 M) was the most efficient receiving phase agent among several aqueous reagents tested. Various parameters such as investigated. Under optimum conditions the transport of Hg(II) across the liquid membrane is more than 97% after 2.5 h. The carrier, IIDE, selectively and efficiently could able to transport Hg (II) ions in the presence of other associated metal ions in binary systems.
Resumo:
This study validated a high performance liquid chromatography (HPLC) method for the quantitative evaluation of quercetin in topical emulsions. The method was linear within 0.05 - 200 μg/mL range with a correlation coefficient of 0.9997, and without interference in the quercetin peak. The detection and quantitation limits were 18 and 29 ng/mL, respectively. The intra- and inter-assay precisions presented R.S.D. values lower than 2%. An average of 93% and 94% of quercetin was recovered for non-ionic and anionic emulsions, respectively. The raw material and anionic emulsion, but not non-ionic emulsion, were stable in all storage conditions for one year. The method reported is a fast and reliable HPLC technique useful for quercetin determination in topical emulsions.
Resumo:
An alternative methodology for analysis of acetaminophen (Ace), phenylephrine (Phe) and carbinoxamine (Car) in tablets by ion-pair reversed phase high performance liquid chromatography was validated. The pharmaceutical preparations were analyzed by using a C18 column (5 μm, 300 mm, 3.9 mm) and mobile phase consisting of 60% methanol and 40% potassium monobasic phosphate aqueous solution (62.46 mmol L-1) added with 1 mL phosphoric acid, 0.50 mL triethylamine and 0.25 g sodium lauryl sulfate. Isocratic analysis was performed under direct UV detection at 220 nm for Phe and Car and at 300 nm for Ace within 5 min.
Resumo:
A capillary electrophoresis (CE) method was developed and validated for determination of cetirizine dihydrochloride in tablets and compounded capsules. The electrophoretic separation was performed in an uncoated fused-silica capillary (40 cm x 50 μm i.d.) using 20 mmol L-1 sodium tetraborate buffer (pH 9.3) as background electrolyte, a hydrodinamic sample injection at 50 mBar for 5 s, 20 KV applied voltage at 25 °C, and detection at 232 nm. The proposed method was compared with the high performance liquid chromatographic (HPLC) method previously validated for this drug, and statistical analysis showed no significant difference between the techniques.
Resumo:
A liquid chromatography method was developed and validated for the determination of phenobarbital in human plasma using phenytoin as internal standard. The drugs were extracted from plasma by liquid-liquid extraction and separated isocratically on a C12 analytical column, maintained at 35 ºC, with water:acetonitrile:methanol (58.8:15.2:26, v/v/v) as mobile phase, run at a flow rate of 1.2 mL/min with detection at 205 nm. The method was linear in the range of 0.1-4 μg/mL (r²=0.9999) and demonstrated acceptable results for the precision, accuracy and stability studies. The method was successfully applied for the bioequivalence study of two tablet formulations (test and reference) of phenobarbital 100 mg after single oral dose administration to healthy human volunteers.