961 resultados para INCREASED EXPRESSION
Resumo:
Cross-species comparative genomics is a powerful strategy for identifying functional regulatory elements within noncoding DNA. In this paper, comparative analysis of human and mouse intronic sequences in the breast cancer susceptibility gene (BRCA1) revealed two evolutionarily conserved noncoding sequences (CNS) in intron 2, 5 kb downstream of the core BRCA1 promoter. The functionality of these elements was examined using homologous-recombination-based mutagenesis of reporter gene-tagged cosmids incorporating these regions and flanking sequences from the BRCA1 locus. This showed that CNS-1 and CNS-2 have differential transcriptional regulatory activity in epithelial cell lines. Mutation of CNS-1 significantly reduced reporter gene expression to 30% of control levels. Conversely mutation of CNS-2 increased expression to 200% of control levels. Regulation is at the level of transcription and shows promoter specificity. Both elements also specifically bind nuclear proteins in vitro. These studies demonstrate that the combination of comparative genomics and functional analysis is a successful strategy to identify novel regulatory elements and provide the first direct evidence that conserved noncoding sequences in BRCA1 regulate gene expression. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
beta-Adrenergic receptor (beta-AR) agonists induce Nur77 mRNA expression in the C2C12 skeletal muscle cell culture model and elicit skeletal muscle hypertrophy. We previously demonstrated that Nur77 (NR4A1) is involved in lipolysis and gene expression associated with the regulation of lipid homeostasis. Subsequently it was demonstrated by another group that beta-AR agonists and cold exposure-induced Nur77 expression in brown adipocytes and brown adipose tissue, respectively. Moreover, NOR-1 (NR4A3) was hyperinduced by cold exposure in the nur77(-/-) animal model. These studies underscored the importance of understanding the role of NOR-1 in skeletal muscle. In this context we observed 30-480 min of beta-AR agonist treatment significantly and transiently increased expression of the orphan nuclear receptor NOR-1 in both mouse skeletal muscle tissue (plantaris) and C2C12 skeletal muscle cells. Specific beta(2)-and beta(3)-AR agonists had similar effects as the pan-agonist and were blocked by the beta-AR antagonist propranolol. Moreover, in agreement with these observations, isoprenaline also significantly increased the activity of the NOR-1 promoter. Stable exogenous expression of a NOR-1 small interfering RNA (but not the negative control small interfering RNA) in skeletal muscle cells significantly repressed endogenous NOR-1 mRNA expression and led to changes in the expression of genes involved in the control of lipid use and muscle mass underscored by a dramatic increase in myostatin mRNA expression. Concordantly the myostatin promoter was repressed by NOR-1 expression. In conclusion, NOR-1 is highly responsive to beta-adrenergic signaling and regulates the expression of genes controlling fatty acid use and muscle mass.
Resumo:
We recently established that fibroblast growth factor (FGF)-1 promotes adipogenesis of primary human preadipocytes (phPA). In the current report, we have characterized the adipogenic effects of FGF-1 in phPA and also in a human PA strain derived from an individual with Simpson-Golabi-Behmel syndrome (SGBS PA), which exhibit an intrinsic capacity to differentiate with high efficiency. In further studies, we compared these models with the well-characterized murine 3T3-L1 preadipocyte cell line (3T3-L1 PA). FGF-1 up-regulated the adipogenic program in phPA, with increased expression of peroxisome proliferator-activated receptor-gamma in confluent PA prior to induction of differentiation and increased expression of adipocyte markers during differentiation. Moreover, phPA differentiated in the presence of FGF-1 were more insulin responsive and secreted increased levels of adiponectin. FGF-1 treatment of SGBS PA further enhanced differentiation. For the most part, the adipogenic program in phPA paralleled that observed in 3T3-L1 PA; however, we found no evidence of mitotic clonal expansion in the phPA. Finally, we investigated a role for extracellular regulated kinase 1/2 (ERK 1/2) in adipogenesis of phPA. FGF-1 induced robust phosphorylation of ERK1/2 in early differentiation and inhibition of ERK1/2 activity significantly reduced phPA differentiation. These data suggest that FGF-1 treated phPA represent a valuable in vitro model for the study of adipogenesis and insulin action and indicate that ERK1/2 activation is necessary for human adipogenesis in the absence of mitotic clonal expansion.
Functional identity of receptors for proteolysis-inducing factor on human and murine skeletal muscle
Resumo:
Background: Cachexia in both mice and humans is associated with tumour production of a sulphated glycoprotein called proteolysis-inducing factor (PIF). In mice PIF binds with high affinity to a surface receptor in skeletal muscle, but little is known about the human receptor. This study compares the human PIF receptor with the murine. Methods: Human PIF was isolated from the G361 melanoma and murine PIF from the MAC16 colon adenocarcinoma. The human PIF receptor was isolated from human skeletal muscle myotubes. Protein synthesis and degradation induced by human and murine PIF was studied in human and murine skeletal muscle myotubes. Results: Both the human and murine PIF receptors showed the same immunoreactivity and Mr 40 000. Both murine and human PIF inhibited total protein synthesis and stimulated protein degradation in human and murine myotubes to about the same extent, and this was attenuated by a rabbit polyclonal antibody to the murine PIF receptor, but not by a non-specific rabbit antibody. Both murine and human PIF increased the activity of the ubiquitin-proteasome pathway in both human and murine myotubes, as evidenced by an increased 'chymotrypsin-like' enzyme activity, protein expression of the 20S and 19S proteasome subunits, and increased expression of the ubiquitin ligases MuRF1 and MAFbx, and this was also attenuated by the anti-mouse PIF receptor antibody. Conclusions: These results suggest that the murine and human PIF receptors are identical. © 2014 Cancer Research UK.
Resumo:
To investigate the hypothesis that the micronutrient ascorbic acid can modulate the functional genome, T cells (CCRF-HSB2) were treated with ascorbic acid (up to 150 μM) for up to 24 h. Protein expression changes were assessed by two-dimensional electrophoresis. Forty-one protein spots which showed greater than two-fold expression changes were subject to identification by matrix-assisted laser desorption ionisation time of flight MS. The confirmed protein identifications were clustered into five groups; proteins were associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of phosphatidylinositol transfer protein (promotes intracellular signalling) within 5 min of ascorbic acid treatment was confirmed by Western blotting. Together, these observations suggest that ascorbic acid modulates the T cell proteome in a time- and dose-dependent manner and identify molecular targets for study following antioxidant supplementation in vivo.
Resumo:
The multifunctional enzyme tissue transglutaminase (TG2) is reported to both mediate and inhibit tumour progression. To elucidate these different roles of TG2, we established a series of stable-transfected mouse colon carcinoma CT26 cells expressing a catalytically active (wild type) and a transamidating-inactive TG2 (Cys277Ser) mutant. Comparison of the TG2-transfected cells with the empty vector control indicated no differences in cell proliferation, apoptosis and susceptibility to doxorubicin, which correlated with no detectable changes in the activation of the transcription factor NF-?B. TG2-transfected cells showed increased expression of integrin ß3, and were more adherent and less migratory on fibronectin than control cells. Direct interaction of TG2 with ß3 integrins was demonstrated by immunoprecipitation, suggesting that TG2 acts as a coreceptor for fibronectin with ß3 integrins. All cells expressed the same level of TGFß receptors I and II, but only cells transfected with active TG2 had increased levels of TGFß1 and matrix-deposited fibronectin, which could be inhibited by TG2 site-directed inhibitors. Moreover, only cells transfected with active TG2 were capable of inhibiting tumour growth when compared to the empty vector controls. We conclude that in this colon carcinoma model increased levels of active TG2 are unfavourable to tumour growth due to their role in activation of TGFß1 and increased matrix deposition, which in turn favours increased cell adhesion and a lowered migratory and invasive behaviour.
Resumo:
Zinc-alpha(2)-glycoprotein (ZAG) is an adipokine associated with fat loss in cancer cachexia. The purpose of this study was to evaluate the ability of recombinant human ZAG to attenuate type 2 diabetes in the ob/ob mouse model. ZAG (50 microg daily, iv) induced a progressive loss of body weight (3.5 g in 5 d), without an effect on food or water intake but with a 0.4 C rise in body temperature, suggesting an increased energy expenditure. Despite an increased plasma glycerol, indicative of increased lipolysis, levels of glucose, triglycerides, and nonesterified fatty acids were decreased by 17, 25, and 62%, respectively, due to an increased use of both glucose and lipids by muscle and brown adipose tissue. The weight of the latter increased 2-fold, and there was increased expression of uncoupling proteins-1 and -3. Plasma insulin levels were reduced by 36%, whereas pancreatic insulin was increased 4-fold, and there was a 53% decrease in the total area under the glucose curve in the glucose tolerance test and reduced insulin requirement. There was an increase in skeletal muscle mass due to an increase in protein synthesis and a decrease in protein degradation. These results suggest that ZAG may potentially be effective in the treatment of type 2 diabetes.
Resumo:
Up to 50% of cancer patients suffer from a progressive atrophy of adipose tissue and skeletal muscle, called cachexia, resulting in weight loss, a reduced quality of life, and a shortened survival time. Anorexia often accompanies cachexia, but appears not to be responsible for the tissue loss, particularly lean body mass. An increased resting energy expenditure is seen, possibly arising from an increased thermogenesis in skeletal muscle due to an increased expression of uncoupling protein, and increased operation of the Cori cycle. Loss of adipose tissue is due to an increased lipolysis by tumor or host products. Loss of skeletal muscle in cachexia results from a depression in protein synthesis combined with an increase in protein degradation. The increase in protein degradation may include both increased activity of the ubiquitin-proteasome pathway and lysosomes. The decrease in protein synthesis is due to a reduced level of the initiation factor 4F, decreased elongation, and decreased binding of methionyl-tRNA to the 40S ribosomal subunit through increased phosphorylation of eIF2 on the a-subunit by activation of the dsRNA-dependent protein kinase, which also increases expression of the ubiquitin-proteasome pathway through activation of NF?B. Tumor factors such as proteolysis-inducing factor and host factors such as tumor necrosis factor-a, angiotensin II, and glucocorticoids can all induce muscle atrophy. Knowledge of the mechanisms of tissue destruction in cachexia should improve methods of treatment. Copyright © 2009 the American Physiological Society
Resumo:
Loss of skeletal muscle is an important determinant of survival in patients with cancer-induced weight loss. The effect of the leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) on the reduction of body weight loss and protein degradation in the MAC16 model of cancer-induced weight loss has been compared with that of eicosapentaenoic acid (EPA), a recognized inhibitor of protein degradation. HMB was found to attenuate the development of weight loss at a dose greater than 0.125 g/kg accompanied by a small reduction in tumor growth rate. When EPA was used at a suboptimal dose level (0.6 g/kg) the combination with HMB seemed to enhance the anticachectic effect. Both treatments caused an increase in the wet weight of soleus muscle and a reduction in protein degradation, although there did not seem to be a synergistic effect of the combination. Proteasome activity, determined by the "chymotrypsin-like" enzyme activity, was attenuated by both HMB and EPA. Protein expression of the 20S alpha or beta subunits was reduced by at least 50%, as were the ATPase subunits MSS1 and p42 of the 19S proteasome regulatory subunit. This was accompanied by a reduction in the expression of E2(14k) ubiquitin-conjugating enzyme. The combination of EPA and HMB was at least as effective or more effective than either treatment alone. Attenuation of proteasome expression was reflected as a reduction in protein degradation in gastrocnemius muscle of cachectic mice treated with HMB. In addition, HMB produced a significant stimulation of protein synthesis in skeletal muscle. These results suggest that HMB preserves lean body mass and attenuates protein degradation through down-regulation of the increased expression of key regulatory components of the ubiquitin-proteasome proteolytic pathway, together with stimulation of protein synthesis.
Resumo:
A number of malignant tumors interact with the host to cause a syndrome of cachexia, characterized by extensive loss of adipose tissue and skeletal muscle mass, but with preservation of proteins in visceral tissues. Although anorexia is frequently present, the body composition changes in cancer cachexia cannot be explained by nutritional deprivation alone. Loss of skeletal muscle mass is a result of depression in protein synthesis and an increase in protein degradation. The main degradative pathway that has been found to have increased expression and activity in the skeletal muscle of cachectic patients is the ubiquitin-proteasome proteolytic pathway. Cachexia-inducing tumors produce catabolic factors such as proteolysis-inducing factor (PIF), a 24 kDa sulfated glycoprotein, which inhibit protein synthesis and stimulate degradation of intracellular proteins in skeletal muscle by inducing an increased expression of regulatory components of the ubiquitin-proteasome proteolytic pathway. While the oligosaccharide chains in PIF are required to initiate protein degradation the central polypeptide core may act as a growth and survival factor. Only cachexia-inducing tumors are capable of elaborating fully glycosylated PIF, and the selectivity of production possibly rests with the acquisition of the necessary glycosylating enzymes, rather than expressing the gene for the polypeptide core. Loss of adipose tissue is probably the result of an increase in catabolism rather than a defect in anabolism. A lipid mobilizing factor (LMF), identical with the plasma protein Zn-α2-glycoprotein (ZAG) is found in the urine of cachectic cancer patients and is produced by tumors causing a decrease in carcass lipid. LMF causes triglyceride hydrolysis in adipose tissue through a cyclic AMP-mediated process by interaction with a β3-adrenoreceptor. Thus, by producing circulating factors certain malignant tumors are able to interfere with host metabolism even without metastasis to that particular site. © 2004 Wiley-Liss, Inc.
Resumo:
The mechanism of muscle protein catabolism induced by proteolysis-inducing factor, produced by cachexia-inducing murine and human tumours has been studied in vitro using C2C12 myoblasts and myotubes. In both myoblasts and myotubes protein degradation was enhanced by proteolysis-inducing factor after 24 h incubation. In myoblasts this followed a bell-shaped dose-response curve with maximal effects at a proteolysis-inducing factor concentration between 2 and 4 nM, while in myotubes increased protein degradation was seen at all concentrations of proteolysis-inducing factor up to 10 nM, again with a maximum of 4 nM proteolysis-inducing factor. Protein degradation induced by proteolysis-inducing factor was completely attenuated in the presence of cycloheximide (1 μM), suggesting a requirement for new protein synthesis. In both myoblasts and myotubes protein degradation was accompanied by an increased expression of the α-type subunits of the 20S proteasome as well as functional activity of the proteasome, as determined by the 'chymotrypsin-like' enzyme activity. There was also an increased expression of the 19S regulatory complex as well as the ubiquitin-conjugating enzyme (E214k), and in myotubes a decrease in myosin expression was seen with increasing concentrations of proteolysis-inducing factor. These results show that proteolysis-inducing factor co-ordinately upregulates both ubiquitin conjugation and proteasome activity in both myoblasts and myotubes and may play an important role in the muscle wasting seen in cancer cachexia. © 2002 Cancer Research UK.
Resumo:
Cancer cachexia encompases severe weight loss, characterised by the debilitating atrophy of adipose and skeletal muscle mass. Skeletal muscle proteolysis in cancer cachexia is mediated by a sulphated glycoprotein with a relative molecular mass of 24kDa, termed Proteolysis-Inducing Factor (PIF). PIF induced a significant increase in protein degradation, peaking at 4.2nM PIF (p<0.001), ‘chymotrypsin-like’ activity of the proteasome (p<0.001) and increased expression of components of the ATP-ubiquitin dependent proteolytic pathway. This was attenuated in vitro by pre-incubation with the PKC inhibitor calphostin C (100µM) and NF-kB the inhibitors SN50 (18µM), curcumin (50µM) and resveratrol (30µM), 2 hours prior to the addition of PIF. In vivo studies found the IKK inhibitor resveratrol (1mg/kg) to be successful in attenuating protein degradation (p<0.001) and upregulation of ubiquitin-dependent proteolysis in MAC16 tumour bearing mice. C2C12 myoblasts transfected with mutant IkBα and PKCα inserts did not elicit a PIF-induced response, suggesting the importance of the transcription factor NF-kB and PKC involvement in PIF signal transduction. 15(S)-HETE acts as an intracellular mediator of PIF and exerts an effect through the activation of PKC and subsequently IKK, which phosphorylates IkBα and allows NF-kB to migrate to the nucleus. This effect was negated with the PKC inhibitor calphostin C (300nM). A commercially produced PIF receptor antibody was raised in rabbits immunised with a peptide containing the partial N-terminal sequence of the PIF receptor. The PIF receptor antibody was successful in attenuating the PIF-induced increase in skeletal muscle catabolism and protein degradation in vitro at 10µg/ml (p<0.001) and 3.47mg/kg in vivo (p<0.001). The data suggest great potential in the development of this antibody as a therapy against cancer cachexia.
Resumo:
Concanavalin A, provoked a 35-fold increase in the rate of proliferation of rat thymocytes. Insulin (10-6M), and insulin-like growth factor I (10-10M) approximately doubled the rate of DNA synthesis. Both of these structurally related molecules acted through the type I insulin-like growth factor receptor. The sequential addition of Concanavalin A and insulin, promoted a much greater proliferative response than to either of the two agonists alone. Insulin also increased the uptake of glucose and amino acids by the cells. Glucose uptake was enhanced at insulin concentrations of 10-6M and 10-10M. Amino acid uptake was more strongly affected at the higher concentration. Insulin-like growth factor I (10-11M) also enhanced amino acid uptake. The effects of insulin on metabolism were mediated by both insulin and type I insulin-like growth factor receptors. These effects were greatly enhanced after a pre-treatment with Concanavalin A. Concanavalin A provided a primary mitogenic signal to the cells. Amongst the responses was an increased expression of insulin and/or type I insulin-like growth factor receptors. The consequent enhanced cellular sensitivity to these agonists, enabled them to facilitate the passage of the cells through the cell cycle by: i) providing a secondary mitogenic signal, and ii) promoting the uptake of raw materials and energy substrates. The initiation of DNA synthesis and passage through the cell cycle was thus punctuated by the sequential expression of various cell surface receptors. This regulated cellular sensitivity, enabling them to react in a precisely orchestrated fashion to hormones and other molecules in their environment. The intracellular mechanism of insulin action remains an enigma. Although the presence of extracellular calcium was essential for insulin stimulation of amino acid uptake and DNA synthesis, the cation did not subserve a direct mediator function. Insulin promoted an increase in intracellular pH, which was mediated by the Na+/H+ antiport. Other mechanisms were probably also involved in mediating the full cellular response to insulin.
Resumo:
OBJECTIVE: To investigate the mechanism of the lipid depletion by zinc-a(2)-glycoprotein (ZAG). DESIGN: Studies were conducted in the ob/ob mouse, or on isolated adipocytes from these animals or their lean counterparts. RESULTS: Treatment of these animals for 15 days with ZAG (100? µg, intravenously, daily) resulted in a reduction of body weight of 6.55? g compared with phosphate-buffered saline-treated controls, without a change in food or water intake, but with a 0.4?°C rise in rectal temperature. ZAG-treated mice had a 30% reduction in carcass fat mass and a twofold increase in weight of brown adipose tissue. Epididymal adipocytes from ZAG-treated mice showed an increased expression of ZAG and hormone-sensitive lipase (HSL), and this was maintained for a further 3 days in the absence of ZAG. There was an increased lipolytic response to isoproterenol, which was retained for 3 days in vitro in the absence of ZAG. Expression of HSL was also increased in subcutaneous and visceral adipose tissue, as was also adipose triglyceride lipase (ATGL). There was a rapid loss of labelled lipid from epididymal adipose tissue of ZAG-treated mice, but not from the other depots, reflecting the difference in sensitivity to lipolytic stimuli. The increased expression of HSL and ATGL may involve the extracellular signal-regulated kinase (ERK) pathway, as the active (phospho) form was upregulated in all adipose depots after ZAG administration, whereas in vitro studies showed induction of HSL and ATGL by ZAG to be attenuated by PD98059, an inhibitor of the ERK pathway. CONCLUSION: These results suggest that ZAG not only induces direct lipolysis, but also sensitizes adipose tissue to other lipolytic stimuli.
Resumo:
OBJECTIVE: To investigate the anti-obesity effect of the adipokine zinc-a(2)-glycoprotein (ZAG) in rats and the mechanism of this effect. SUBJECTS: Mature male Wistar rats (540 ± 83 g) were administered human recombinant ZAG (50 µg per 100 g body weight given intravenously daily) for 10 days, while control animals received an equal volume of phosphate-buffered saline (PBS). RESULTS: Animals treated with ZAG showed a progressive decrease in body weight, without a decrease in food and water intake, but with a 0.4 °C rise in body temperature. Body composition analysis showed loss of adipose tissue, but an increase in lean body mass. The loss of fat was due to an increase in lipolysis as shown by a 50% elevation of plasma glycerol, accompanied by increased utilization of non-esterified fatty acids, as evidenced by the 55% decrease in plasma levels. Plasma levels of glucose and triglycerides were also reduced by 36-37% and there was increased expression of the glucose transporter 4 in both skeletal muscle and adipose tissue. Expression of the lipolytic enzymes adipose triglyceride lipase and hormone-sensitive lipase in the white adipose tissue (WAT) were increased twofold after ZAG administration. There was almost a twofold increased expression of uncoupling proteins 1 and 3 in brown adipose tissue and WAT, which would contribute to increased substrate utilization. Administration of ZAG increased ZAG expression twofold in the gastrocnemius muscle, BAT and WAT, which was probably necessary for its biological effect. CONCLUSION: These results show that ZAG produces increased lipid mobilization and utilization in the rat.