895 resultados para INCREASED EXPRESSION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Apurinic/Apyrimidinic Endonuclease 1 (APE-1) is an essential protein for DNA base excision repair (BER) pathway and regulation of redox activities. The ability of malignant cells to recognize and repair DNA damage is an important mechanism for tumor survival, and recent studies suggest that APE-1 overexpression is related to poor prognosis in some tumors. Purpose: To analyze the immunoreactivity of APE-1 in Pleomorphic Adenomas (PA) and Carcinomas Ex Pleomorphic Adenomas (CaExPA) of salivary glands. Materials and Methods: A total of 49 tumors fixed in formalin and embedded in paraffin (33 PA and 16 CaExPA) underwent immunohistochemical study by the immunoperoxidase technique. APE-1 immunoreactivity was evaluated quantitatively by the percentage of immunopositive cells. For statistical analysis a significance level of 5% (p≤ 0.05) was adopted. Results: All cases of PA and CaExPA (n=49) were positive for APE-1, however, there was a higher expression in CaExPA, with statistically significant difference (p<0.001). There was no association between APE-1 expression and tumors of major or minor salivary gland, however, not encapsulated PA (median expression = 54.2%) showed higher expression when compared to encapsulated tumors (p=0.02). APE-1 overexpression was found mainly in cases of CaExAP with lymph node metastasis (median expression = 90.3% - p=0.002) and invasive pattern (median expression = 89.9% - p=0.003), when compared to cases without metastasis and intracapsular pattern. Conclusion: This study suggests that APE-1 is deregulated in the studied tumors. The increased expression of APE-1 is associated with the absence of complete capsule in PA and it is associated with more aggressive behavior in CaExPA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Squamous cell carcinoma of oral tongue shows high rates of morbidity and mortality in the population, therefore, great efforts are being made to classify morphological changes and identify biomarkers that have prognostic value and that are able to group patients in individualized therapeutic options. From this perspective, there is the heat shock factor 1 (HSF1), which is a heat shock factor transcription protein (HSPs) that allows the cancer to deal with stressors associated with malignancy, acting differently in tumor progression. This research aimed to perform a clinico-pathological analysis of 70 cases of oral tongue squamous cell carcinoma (OTSCC) and immunohistochemical study of the expression of HSF1 protein in OTSCC, comparing it with 30 specimens of normal oral mucosa (NOM), and correlating this immunostaining with clinico-pathological aspects of OTSCC. To analyze the association between immunoexpression of HSF1 and clinicophatoloical aspects, the cases were categorized in minor and major overexpression, based in the median immunostaining score. Regarding the cases of OTSCC, 57.1% showed clinical stage III or IV, 82.9% were graded as high grade according to Bryne (1998) and 47.1% as high risk of malignancy according to Brandwein-Gensler et al., (2005). A disease free survival rate of 47.84% and overall survival rate of 68.20% was observed in the analyzed cases, and the high degree of malignancy according to Bryne’s system (1998) (p=0.05), tumor size T3 or T4 (p=0.04), local recurrence (p=0.02), and perineural invasion (p=0.02) determined negative impacts in survival time. We observed also a statistically significant result (p<0.01) when comparing the immunoreactivity of HSF1 between NOM and OTSCC. This significantly increased expression of HSF1 in cases of OTSCC suggests that this protein acts, indeed, in the pathogenesis of this disease. However, there were no statistically significant associations between this overexpression and the clinico-pathological parameters analyzed. This finding may reflect the influence of epigenetic events on HSF1 gene or a possible stability of this protein expression throughout disease progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Squamous cell carcinoma of oral tongue shows high rates of morbidity and mortality in the population, therefore, great efforts are being made to classify morphological changes and identify biomarkers that have prognostic value and that are able to group patients in individualized therapeutic options. From this perspective, there is the heat shock factor 1 (HSF1), which is a heat shock factor transcription protein (HSPs) that allows the cancer to deal with stressors associated with malignancy, acting differently in tumor progression. This research aimed to perform a clinico-pathological analysis of 70 cases of oral tongue squamous cell carcinoma (OTSCC) and immunohistochemical study of the expression of HSF1 protein in OTSCC, comparing it with 30 specimens of normal oral mucosa (NOM), and correlating this immunostaining with clinico-pathological aspects of OTSCC. To analyze the association between immunoexpression of HSF1 and clinicophatoloical aspects, the cases were categorized in minor and major overexpression, based in the median immunostaining score. Regarding the cases of OTSCC, 57.1% showed clinical stage III or IV, 82.9% were graded as high grade according to Bryne (1998) and 47.1% as high risk of malignancy according to Brandwein-Gensler et al., (2005). A disease free survival rate of 47.84% and overall survival rate of 68.20% was observed in the analyzed cases, and the high degree of malignancy according to Bryne’s system (1998) (p=0.05), tumor size T3 or T4 (p=0.04), local recurrence (p=0.02), and perineural invasion (p=0.02) determined negative impacts in survival time. We observed also a statistically significant result (p<0.01) when comparing the immunoreactivity of HSF1 between NOM and OTSCC. This significantly increased expression of HSF1 in cases of OTSCC suggests that this protein acts, indeed, in the pathogenesis of this disease. However, there were no statistically significant associations between this overexpression and the clinico-pathological parameters analyzed. This finding may reflect the influence of epigenetic events on HSF1 gene or a possible stability of this protein expression throughout disease progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Squamous cell carcinoma (SCC ) is the most common malignancy of the oral cavity (OSCC), with a high mortality rate. Due to this, the discovery of biomarkers that facilitate the understanding of the biological behavior of the tumor and improve treatment is necessary. Urokinase type plasminogen activator (uPA) and its receptor, uPAR, are responsible for the proteolysis of structures of the basement membrana and extracellular matrix, facilitating tumor invasion. This study aims to assess the immuno expression of these proteins in 46 cases of squamous cell carcinoma of the oral tongue (OTSCC). These results were related to the presence of metastasis, clinical TNM staging, locoregional recurrence, outcome of the lesion and histological grading. Immunostaining of each case was evaluated semiquantitatively, in the front of invasion and center of the tumor, in which scores were assigned: 0 (0% of positive cells), 1 (1-10% of positive cells), 2 (11 -50% positive cells) and 3 (more than 50% positive cells). The expression of uPA was observed in 93.5% (n=43) of the cases in the front of invasion, with predominance of score 2 (n=16; 34.8%) and in 67.9% (n=31) of the cases in the center of the tumor, with predominance of score 1 (n=15; 32.6%). Overall, the immunoexpression of uPA was not associated with clinical parameters. Regarding the malignant histological grading, a higher expression of uPA was observed in cases of high-grade malignancy comp ared to low-grade malignancy (p=0.05). Regarding the morphological parameters, increased expression of uPA was observed in the worst mode of invasion (p=0.03 ). The expression of uPAR was observed in 73.9% of cases in the front of invasion, with a predominance of score 1 (n=21; 45.6 %), and in 47.5% (n=21) of the cases in the center of the tumor, with a predominance of score 0 (n=25; 54.4%). Although no statistical differences were observed in relation to lymph node metastasis, clinical TNM staging, outcome, and histological grading, there was a higher expression of uPAR in cases with locoregional recurrence (p=0.04). Regarding the tumor intra -localization, it was observed an increased expression of uPA and uPAR at the front of invasion in relation to the center of the tumor (p<0.001). Regarding the correlation between uPA and uPAR, there was no statistical sign ificance. Based on these results, it is suggested that uPA and uPAR are involved in the progression of CELO, mainly in the deeper region of the tumor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Squamous cell carcinoma (SCC ) is the most common malignancy of the oral cavity (OSCC), with a high mortality rate. Due to this, the discovery of biomarkers that facilitate the understanding of the biological behavior of the tumor and improve treatment is necessary. Urokinase type plasminogen activator (uPA) and its receptor, uPAR, are responsible for the proteolysis of structures of the basement membrana and extracellular matrix, facilitating tumor invasion. This study aims to assess the immuno expression of these proteins in 46 cases of squamous cell carcinoma of the oral tongue (OTSCC). These results were related to the presence of metastasis, clinical TNM staging, locoregional recurrence, outcome of the lesion and histological grading. Immunostaining of each case was evaluated semiquantitatively, in the front of invasion and center of the tumor, in which scores were assigned: 0 (0% of positive cells), 1 (1-10% of positive cells), 2 (11 -50% positive cells) and 3 (more than 50% positive cells). The expression of uPA was observed in 93.5% (n=43) of the cases in the front of invasion, with predominance of score 2 (n=16; 34.8%) and in 67.9% (n=31) of the cases in the center of the tumor, with predominance of score 1 (n=15; 32.6%). Overall, the immunoexpression of uPA was not associated with clinical parameters. Regarding the malignant histological grading, a higher expression of uPA was observed in cases of high-grade malignancy comp ared to low-grade malignancy (p=0.05). Regarding the morphological parameters, increased expression of uPA was observed in the worst mode of invasion (p=0.03 ). The expression of uPAR was observed in 73.9% of cases in the front of invasion, with a predominance of score 1 (n=21; 45.6 %), and in 47.5% (n=21) of the cases in the center of the tumor, with a predominance of score 0 (n=25; 54.4%). Although no statistical differences were observed in relation to lymph node metastasis, clinical TNM staging, outcome, and histological grading, there was a higher expression of uPAR in cases with locoregional recurrence (p=0.04). Regarding the tumor intra -localization, it was observed an increased expression of uPA and uPAR at the front of invasion in relation to the center of the tumor (p<0.001). Regarding the correlation between uPA and uPAR, there was no statistical sign ificance. Based on these results, it is suggested that uPA and uPAR are involved in the progression of CELO, mainly in the deeper region of the tumor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fucoidan is a term used to define heteropolysaccharides that are composed of less than 90% L-fucose. The exception to this rule is the homofucoidan obtained from the seaweed Fucus vesiculosus. This fucoidan can be purchased from SIGMA Co. and have been used in various research for evaluation of their pharmacological activities. However, it is not a pure molecule. In fact, it is a mix of several fucoidan molecules. In this work, were obtained, from acetone precipitation, and biochemically characterized, four fucoidan molecules from SIGMA-ALDRICH Co. fucoidan to evaluate their anticoagulant, antioxidant, antiadipogenic, immunomodulatory and antiurolithiatic activities. In anticoagulant activity, evaluated by aPTT assay, fucoidans F0.9, F1.1 and F2.0 increased eightfold the coagulation time, compared to the control, when a mass of 10 μg was used. To PT test, only fucoidan F0.9 was capable of increase the coagulation time, compared to control. In the total antioxidant capacity assay (TAC), the fucoidan F2.0 showed 400 ascorbic acid equivalents, while fucoidan F0.5, the lest effective, 38 equivalents. In respect to the effect on pre-adipocyte cell lines (3T3-L1) adipogenesis, was observed that fucoidan F1.1 and F2.0 reduced the adipogenesis and this effect was associated to the reduction in the expression of regulatoy proteins C/EBPα, C/EBPβ and PPARγ. On the other hand, fucoidans F0.5 and F0.9 induced increased expression of these regulatory proteins. Furthermore, fucoidan F2.0 induced hydrolysis of triglycerides present in the interior of adipocytes. The immunomodulatory effect was evaluated and observed that the presence of fucoidans F0.5 , F1.1 and F2.0 significantly reduced the production of nitric oxide by activated macrophages with LPS specially fucoidan F2.0 that in 100 μg/mL, reduced about 55% the effect caused by LPS. Relative to the effect upon the formation of calcium oxalate crystals, fucoidan F0.5 was more effective in reduce the aggregation of the crystals and this effect it was not significantly different regarding the effect caused by the crude. Besides, fucoidan F0.5 only promoted the formation of COD type crystals, while fucoidans F1.1 and F2.0 did not influence the formation of crystals compared with the control. The results described in this study indicate that the commercial crude fucoidan of Fucus vesiculosus it’s a mix of several fucoidan which, in turn, have different chemical compositions besides having different pharmacological activities. The use of these fucoidans it´s indicated according the pharmacological activity to be evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fucoidan is a term used to define heteropolysaccharides that are composed of less than 90% L-fucose. The exception to this rule is the homofucoidan obtained from the seaweed Fucus vesiculosus. This fucoidan can be purchased from SIGMA Co. and have been used in various research for evaluation of their pharmacological activities. However, it is not a pure molecule. In fact, it is a mix of several fucoidan molecules. In this work, were obtained, from acetone precipitation, and biochemically characterized, four fucoidan molecules from SIGMA-ALDRICH Co. fucoidan to evaluate their anticoagulant, antioxidant, antiadipogenic, immunomodulatory and antiurolithiatic activities. In anticoagulant activity, evaluated by aPTT assay, fucoidans F0.9, F1.1 and F2.0 increased eightfold the coagulation time, compared to the control, when a mass of 10 μg was used. To PT test, only fucoidan F0.9 was capable of increase the coagulation time, compared to control. In the total antioxidant capacity assay (TAC), the fucoidan F2.0 showed 400 ascorbic acid equivalents, while fucoidan F0.5, the lest effective, 38 equivalents. In respect to the effect on pre-adipocyte cell lines (3T3-L1) adipogenesis, was observed that fucoidan F1.1 and F2.0 reduced the adipogenesis and this effect was associated to the reduction in the expression of regulatoy proteins C/EBPα, C/EBPβ and PPARγ. On the other hand, fucoidans F0.5 and F0.9 induced increased expression of these regulatory proteins. Furthermore, fucoidan F2.0 induced hydrolysis of triglycerides present in the interior of adipocytes. The immunomodulatory effect was evaluated and observed that the presence of fucoidans F0.5 , F1.1 and F2.0 significantly reduced the production of nitric oxide by activated macrophages with LPS specially fucoidan F2.0 that in 100 μg/mL, reduced about 55% the effect caused by LPS. Relative to the effect upon the formation of calcium oxalate crystals, fucoidan F0.5 was more effective in reduce the aggregation of the crystals and this effect it was not significantly different regarding the effect caused by the crude. Besides, fucoidan F0.5 only promoted the formation of COD type crystals, while fucoidans F1.1 and F2.0 did not influence the formation of crystals compared with the control. The results described in this study indicate that the commercial crude fucoidan of Fucus vesiculosus it’s a mix of several fucoidan which, in turn, have different chemical compositions besides having different pharmacological activities. The use of these fucoidans it´s indicated according the pharmacological activity to be evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Statins are a class of drug that inhibits cholesterol biosynthesis, and are used to treat patients with high serum cholesterol levels. They exert this function by competitively binding to the enzyme 3-hydroxy-3-methylglutaryl-CoenzymeA reductase (HMGR), which catalyses the formation of mevalonate, a rate-limiting step in cholesterol biosynthesis. In addition, statins have what are called “pleiotropic effects”, which include the reduction of inflammation, immunomodulation, and antimicrobial effects. Statins can also improve survival of patients with sepsis and pneumonia. Cystic fibrosis (CF) is the most common recessive inherited disease in the Caucasian population, which is characterised by factors including, but not limited to, excessive lung inflammation and increased susceptibility to infection. Therefore, the overall objective of this study was to examine the effects of statins on CFassociated bacterial pathogens and the host response. In this work, the prevalence of HMGR was examined in respiratory pathogens, and several CF-associated pathogens were found to possess homologues of this enzyme. HMGR homology was analysed in Staphylococcus aureus, Burkholderia cenocepacia and Streptococcus pneumoniae, and the HMGR of B. cenocepacia was found to have significant conservation to that of Pseudomonas mevalonii, which is the most widely-characterised bacterial HMGR. However, in silico analysis revealed that, unlike S. aureus and S. pneumoniae, B. cenocepacia did not possess homologues of other mevalonate pathway proteins, and that the HMGR of B. cenocepacia appeared to be involved in an alternative metabolic pathway. The effect of simvastatin was subsequently tested on the growth and virulence of S. aureus, B. cenocepacia and S. pneumoniae. Simvastatin inhibited the growth of all 3 species in a dose-dependent manner. In addition, statin treatment also attenuated biofilm formation of all 3 species, and reduced in vitro motility of S. aureus. Interestingly, simvastatin also increased the potency of the aminoglycoside antibiotic gentamicin against B. cenocepacia. The impact of statins was subsequently tested on the predominant CF-associated pathogen Pseudomonas aeruginosa, which does not possess a HMGR homologue. Mevastatin, lovastatin and simvastatin did not influence the growth of this species. However, sub-inhibitory statin concentrations reduced the swarming motility and biofilm formation of P. aeruginosa. The influence of statins was also examined on Type 3 toxin secretion, quorum sensing and chemotaxis, and no statin effect was observed on any of these phenotypes. Statins did not appear to have a characteristic effect on the P. aeruginosa transcriptome. However, a mutant library screen revealed that the effect of statins on P. aeruginosa biofilm was mediated through the PvrR regulator and the Cup fimbrial biosynthesis genes. Furthermore, proteomic analysis demonstrated that 6 proteins were reproducibly induced by simvastatin in the P. aeruginosa swarming cells. The effect of statins on the regulation of the host-P. aeruginosa immune response was also investigated. Statin treatment increased expression of the pro-inflammatory cytokines IL-8 and CCL20 in lung epithelial cells, but did not attenuate P. aeruginosa-mediated inflammatory gene induction. In fact, simvastatin and P. aeruginosa caused a synergistic effect on CCL20 expression. The expression of the transcriptional regulators KLF2 and KLF6 was also increased by statins and P. aeruginosa, with the induction of KLF6 by simvastatin proving to be a novel effect. Interestingly, both statins and P. aeruginosa were capable of inducing alternative splicing of KLF6. P. aeruginosa was found to induce KLF6 alternative splicing by way of the type 3 secreted toxin ExoS. In addition, a mechanistic role was elucidated for KLF6 in the lung, as it was determined that statin-mediated induction of this protein was responsible for the induction of the host response genes CCL20 and iNOS. Moreover, statin treatment caused a slight increase in infection-related cytotoxicity, and increased bacterial adhesion to cells. Taken together, these data demonstrate that statins can reduce the virulence of CFassociated bacterial pathogens and alter host response effectors. Furthermore, novel statin effectors were identified in both bacterial and host cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is an extremely rare but highly aggressive form of breast cancer characterized by the rapid development of therapeutic resistance leading to particularly poor survival. Our previous work focused on the elucidation of factors that mediate therapeutic resistance in IBC and identified increased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein (XIAP), to correlate with the development of resistance to chemotherapeutics. Although XIAP is classically thought of as an inhibitor of caspase activation, multiple studies have revealed that XIAP can also function as a signaling intermediate in numerous pathways. Based on preliminary evidence revealing high expression of XIAP in pre-treatment IBC cells rather than only subsequent to the development of resistance, we hypothesized that XIAP could play an important signaling role in IBC pathobiology outside of its heavily published apoptotic inhibition function. Further, based on our discovery of inhibition of chemotherapeutic efficacy, we postulated that XIAP overexpression might also play a role in resistance to other forms of therapy, such as immunotherapy. Finally, we posited that targeting of specific redox adaptive mechanisms, which are observed to be a significant barrier to successful treatment of IBC, could overcome therapeutic resistance and enhance the efficacy of chemo-, radio-, and immuno- therapies. To address these hypotheses our objectives were: 1. to determine a role for XIAP in IBC pathobiology and to elucidate the upstream regulators and downstream effectors of XIAP; 2. to evaluate and describe a role for XIAP in the inhibition of immunotherapy; and 3. to develop and characterize novel redox modulatory strategies that target identified mechanisms to prevent or reverse therapeutic resistance.

Using various genomic and proteomic approaches, combined with analysis of cellular viability, proliferation, and growth parameters both in vitro and in vivo, we demonstrate that XIAP plays a central role in both IBC pathobiology in a manner mostly independent of its role as a caspase-binding protein. Modulation of XIAP expression in cells derived from patients prior to any therapeutic intervention significantly altered key aspects IBC biology including, but not limited to: IBC-specific gene signatures; the tumorigenic capacity of tumor cells; and the metastatic phenotype of IBC, all of which are revealed to functionally hinge on XIAP-mediated NFκB activation, a robust molecular determinant of IBC. Identification of the mechanism of XIAP-mediated NFκB activation led to the characterization of novel peptide-based antagonist which was further used to identify that increased NFκB activation was responsible for redox adaptation previously observed in therapy-resistant IBC cells. Lastly, we describe the targeting of this XIAP-NFκB-ROS axis using a novel redox modulatory strategy both in vitro and in vivo. Together, the data presented here characterize a novel and crucial role for XIAP both in therapeutic resistance and the pathobiology of IBC; these results confirm our previous work in acquired therapeutic resistance and establish the feasibility of targeting XIAP-NFκB and the redox adaptive phenotype of IBC as a means to enhance survival of patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer in part due to inherent resistance to chemotherapy, including the first-line drug gemcitabine. Gemcitabine is a nucleoside pyrimidine analog that has long been the backbone of chemotherapy for PDAC, both as a single agent, and more recently, in combination with nab-paclitaxel. Since gemcitabine is hydrophilic, it must be transported through the hydrophobic cell membrane by transmembrane nucleoside transporters. Human equilibrative nucleoside transporter-1 (hENT1) and human concentrative nucleoside transporter-3 (hCNT3) both have important roles in the cellular uptake of the nucleoside analog gemcitabine. While low expression of hENT1 and hCNT3 has been linked to gemcitabine resistance clinically, mechanisms regulating their expression in the PDAC tumor microenvironment are largely unknown. We identified that the matricellular protein Cysteine-Rich Angiogenic Inducer 61 (CYR61) negatively regulates expression of hENT1 and hCNT3. CRISPR/Cas9-mediated knockout of CYR61 significantly increased expression of hENT1 and hCNT3 and cellular uptake of gemcitabine. CRSIPR-mediated knockout of CYR61 sensitized PDAC cells to gemcitabine-induced apoptosis. Conversely, adenovirus-mediated overexpression of CYR61 decreased hENT1 expression and reduced gemcitabine-induced apoptosis. We demonstrate that CYR61 is expressed primarily by stromal pancreatic stellate cells (PSCs) within the PDAC tumor microenvironment, with Transforming Growth Factor- β (TGF-β) inducing the expression of CYR61 in PSCs through canonical TGF-β-ALK5-Smad signaling. Activation of TGF-β signaling or expression of CYR61 in PSCs promotes resistance to gemcitabine in an in vitro co-culture assay with PDAC cells. Our results identify CYR61 as a TGF-β induced stromal-derived factor that regulates gemcitabine sensitivity in PDAC and suggest that targeting CYR61 may improve chemotherapy response in PDAC patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TRPV4 ion channels function in epidermal keratinocytes and in innervating sensory neurons; however, the contribution of the channel in either cell to neurosensory function remains to be elucidated. We recently reported TRPV4 as a critical component of the keratinocyte machinery that responds to ultraviolet B (UVB) and functions critically to convert the keratinocyte into a pain-generator cell after excess UVB exposure. One key mechanism in keratinocytes was increased expression and secretion of endothelin-1, which is also a known pruritogen. Here we address the question of whether TRPV4 in skin keratinocytes functions in itch, as a particular form of "forefront" signaling in non-neural cells. Our results support this novel concept based on attenuated scratching behavior in response to histaminergic (histamine, compound 48/80, endothelin-1), not non-histaminergic (chloroquine) pruritogens in Trpv4 keratinocyte-specific and inducible knock-out mice. We demonstrate that keratinocytes rely on TRPV4 for calcium influx in response to histaminergic pruritogens. TRPV4 activation in keratinocytes evokes phosphorylation of mitogen-activated protein kinase, ERK, for histaminergic pruritogens. This finding is relevant because we observed robust anti-pruritic effects with topical applications of selective inhibitors for TRPV4 and also for MEK, the kinase upstream of ERK, suggesting that calcium influx via TRPV4 in keratinocytes leads to ERK-phosphorylation, which in turn rapidly converts the keratinocyte into an organismal itch-generator cell. In support of this concept we found that scratching behavior, evoked by direct intradermal activation of TRPV4, was critically dependent on TRPV4 expression in keratinocytes. Thus, TRPV4 functions as a pruriceptor-TRP in skin keratinocytes in histaminergic itch, a novel basic concept with translational-medical relevance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insulin-like Growth Factor-1 (IGF-1) signalling promotes cell growth and is associated with cancer progression, including metastasis, epithelial-mesenchymal transition (EMT), and resistance to therapy. Mitochondria play an essential role in cancer cell metabolism and accumulating evidence demonstrates that dysfunctional mitochondria associated with release of mitochondrial reactive oxygen species (ROS) can influence cancer cell phenotype and invasive potential. We previously isolated a mitochondrial UTP carrier (PNC1/SLC25A33) whose expression is regulated by IGF-1, and which is essential for mitochondrial maintenance. PNC1 suppression in cancer cells results in mitochondrial dysfunction and acquisition of a profound ROS-dependent invasive (EMT) phenotype. Moreover, over-expression of PNC1 in cancer cells that exhibit an EMT phenotype is sufficient to suppress mitochondrial ROS production and reverse the invasive phenotype. This led us to investigate the IGF-1-mitochondrial signalling axis in cancer cells. We found that IGF-1 signalling supports increased mitochondrial mass and Oxphos potential through a PI3K dependant pathway. Acute inhibition of IGF-1R activity with a tyrosine kinase inhibitor results in dysfunctional mitochondria and cell death. We also observed an adaptive response to IGF-1R inhibition upon prolonged exposure to the kinase inhibitor, where increased expression of the EGF receptor can compensate for loss of mitochondrial mass through activation of PI3K/mTOR signalling. However, these cells exhibit impaired mitochondrial biogenesis and mitophagy. We conclude that the IGF-1 is required for mitochondrial maintenance and biogenesis in cancer cells, and that pharmacological inhibition of this pathway may induce mitochondrial dysfunction and may render the cells more sensitive to glycolysis-targeted drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spontaneous fetal loss (25-40%) leading to decrease in litter size is a significant concern to the pork industry. A deficit in the placental vasculature has emerged as one of the important factors associated with fetal loss. During early pig pregnancy, the endometrium becomes enriched with immune cells recruited by conceptus-derived signals including specific chemokine stimuli. These immune cells assist in various aspects of placental development and angiogenesis. Recent evidence suggests that microRNAs (miRNAs: small non-coding RNAs that regulate gene expression) regulate immune cell development and their functions. In addition, intercellular communication including exchange of biomolecules (e.g. miRNAs) between the conceptus and endometrium regulate key developmental processes during pregnancy. To understand the biological significance of immune cell enrichment, regulation of their functions by miRNAs and transfer of miRNAs across the maternal fetal-interface, we screened specific sets of chemokines and pro- and anti-angiogenic miRNAs in endometrial lymphocytes (ENDO LY), endometrium, and chorioallantoic membrane (CAM) isolated from conceptus attachment sites (CAS) during early, gestation day (gd)20 and mid-pregnancy (gd50). We report increased expression of selected chemokines including CXCR3 and CCR5 in ENDO LY and CXCL10, CXCR3, CCL5, CCR5 in endometrium associated with arresting CAS at gd20. Some of these differences were also noted at the protein level (CXCL10, CXCR3, CCL5, and CCR5) in endometrium and CAM. We report for the first time significant differences for miRNAs involved in immune cell-derived angiogenesis (miR-296-5P, miR-150, miR-17P-5P, miR-18a, and miR-19a) between ENDO LY associated with healthy and arresting CAS. Significant differences were also found in endometrium and CAM for some miRNAs (miR-17-5P, miR-18a, miR-15b-5P, and miR-222). Finally, we confirm that placenta specific-exosomes contain proteins and 14 select miRNAs including miR-126-5P, miR-296-5P, miR-16, and miR-17-5P that are of relevance to early implantation events. We further demonstrated the bidirectional exosome shuttling between porcine trophectoderm cells (PTr2) and porcine aortic endothelial cells (PAOEC). PTr2-derived exosomes were able to modulate the endothelial cell proliferation that is crucial for the establishment of pregnancy. Our data unravels the selected chemokines and miRNAs associated with immune cell-regulated angiogenesis and reconfirm that exosome mediated cell-cell communication opens-up new avenues to understand porcine pregnancy.