848 resultados para Hybrid genetic algorithm
Resumo:
A power transformer needs continuous monitoring and fast protection as it is a very expensive piece of equipment and an essential element in an electrical power system. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can mislead the conventional protection affecting the power system stability negatively. This study proposes the development of a new algorithm to improve the protection performance by using fuzzy logic, artificial neural networks and genetic algorithms. An electrical power system was modelled using Alternative Transients Program software to obtain the operational conditions and fault situations needed to test the algorithm developed, as well as a commercial differential relay. Results show improved reliability, as well as a fast response of the proposed technique when compared with conventional ones.
Resumo:
A method to analyze parabolic reflectors with arbitrary piecewise rim is presented in this communication. This kind of reflectors, when operating as collimators in compact range facilities, needs to be large in terms of wavelength. Their analysis is very inefficient, when it is carried out with fullwave/MoM techniques, and it is not very appropriate for designing with PO techniques. Also, fast GO formulations do not offer enough accuracy to reach performance results. The proposed algorithm is based on a GO-PWS hybrid scheme, using analytical as well as non-analytical formulations. On one side, an analytical treatment of the polygonal rim reflectors is carried out. On the other side, non-analytical calculi are based on efficient operations, such as M2 order 2-dimensional FFT. A combination of these two techniques in the algorithm ensures real ad-hoc design capabilities, reached through analysis speedup. The purpose of the algorithm is to obtain an optimal conformal serrated-edge reflector design through the analysis of the field quality within the quiet zone that it is able to generate in its forward half space.
Resumo:
This paper describes an approach to solve the inverse kinematics problem of humanoid robots whose construction shows a small but non negligible offset at the hip which prevents any purely analytical solution to be developed. Knowing that a purely numerical solution is not feasible due to variable efficiency problems, the proposed one first neglects the offset presence in order to obtain an approximate “solution” by means of an analytical algorithm based on screw theory, and then uses it as the initial condition of a numerical refining procedure based on the Levenberg‐Marquardt algorithm. In this way, few iterations are needed for any specified attitude, making it possible to implement the algorithm for real‐time applications. As a way to show the algorithm’s implementation, one case of study is considered throughout the paper, represented by the SILO2 humanoid robot.
Resumo:
Low energy X-rays Intra-Operative Radiation Therapy (XIORT) treatment delivered during surgery (ex: INTRABEAM, Carl Zeiss, and Axxent, Xoft) can benefit from accurate and fast dose prediction in a patient 3D volume.
Resumo:
The genetic basis of heterosis was investigated in an elite rice hybrid by using a molecular linkage map with 150 segregating loci covering the entire rice genome. Data for yield and three traits that were components of yield were collected over 2 years from replicated field trials of 250 F2:3 families. Genotypic variations explained from about 50% to more than 80% of the total variation. Interactions between genotypes and years were small compared with the main effects. A total of 32 quantitative trait loci (QTLs) were detected for the four traits; 12 were observed in both years and the remaining 20 were detected in only one year. Overdominance was observed for most of the QTLs for yield and also for a few QTLs for the component traits. Correlations between marker heterozygosity and trait expression were low, indicating that the overall heterozygosity made little contribution to heterosis. Digenic interactions, including additive by additive, additive by dominance, and dominance by dominance, were frequent and widespread in this population. The interactions involved large numbers of marker loci, most of which individually were not detectable on single-locus basis; many interactions among loci were detected in both years. The results provide strong evidence that epistasis plays a major role as the genetic basis of heterosis.
Resumo:
Many biological processes rely upon protein-protein interactions. Hence, detailed analysis of these interactions is critical for their understanding. Due to the complexities involved, genetic approaches are often needed. In yeast and phage, genetic characterizations of protein complexes are possible. However, in multicellular organisms, such characterizations are limited by the lack of powerful selection systems. Herein we describe genetic selections that allow single amino acid changes that disrupt protein-protein interactions to be selected from large libraries of randomly generated mutant alleles. The strategy, based on a yeast reverse two-hybrid system, involves a first-step negative selection for mutations that affect interaction, followed by a second-step positive selection for a subset of these mutations that maintain expression of full-length protein (two-step selection). We have selected such mutations in the transcription factor E2F1 that affect its ability to heterodimerize with DP1. The mutations obtained identified a putative helix in the marked box, a region conserved among E2F family members, as an important determinant for interaction. This two-step selection procedure can be used to characterize any interaction domain that can be tested in the two-hybrid system.
Resumo:
In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues related to the convergence of distillation columns (or column sections) are also maintained in the simulation environment. The model is formulated as a Generalized Disjunctive Programming (GDP) problem and solved using the logic based outer approximation algorithm without MINLP reformulation. Some examples involving from a single column to thermally coupled sequence or extractive distillation shows the performance of the new algorithm.
Resumo:
Includes bibliographical references (p. 56-57).
Resumo:
A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Genetic control of adventitious rooting was characterised in two unrelated Pinus elliottii x P. caribaea families, an outbred F-1 (n = 287) and an inbred F-2 ( n = 357). Rooting percentage was assessed in three settings and root biomass was measured on a sub-set of clones ( n = 50) from each family in the third setting. On average, clones in the outbred F-1 had a higher rooting percentage (mean +/- SE; 59 +/- 1.9%) and biomass (mean +/- SD; 0.41 +/- 0.24 g) than clones in the inbred F-2 family ( mean +/- SE; 48 +/- 1.8% and mean +/- SD; 0.19 +/- 0.13 g). Genetic determination for rooting percentage was strong in both families, as indicated by high individual setting clonal repeatabilities ( e. g. Setting 3; outbred F-1 0.62 +/- 0.03 and inbred F-2 0.68 +/- 0.02 (H-2 +/- SE)) and the moderate-to-high genetic correlations amongst the three settings. For root biomass, clonal repeatabilities for both families were lower (outbred F-1 0.35 +/- 0.09 and inbred F-2 0.44 +/- 0.10 (H-2 +/- SE)). Weak positive genetic correlations between rooting percentage and root biomass in both families suggested a concomitant gain in root biomass would be insignificant when selecting solely on the more easily assessable rooting percentage.
Resumo:
Real world search problems, characterised by nonlinearity, noise and multidimensionality, are often best solved by hybrid algorithms. Techniques embodying different necessary features are triggered at specific iterations, in response to the current state of the problem space. In the existing literature, this alternation is managed either statically (through pre-programmed policies) or dynamically, at the cost of high coupling with algorithm inner representation. We extract two design patterns for hybrid metaheuristic search algorithms, the All-Seeing Eye and the Commentator patterns, which we argue should be replaced by the more flexible and loosely coupled Simple Black Box (Two-B) and Utility-based Black Box (Three-B) patterns that we propose here. We recommend the Two-B pattern for purely fitness based hybridisations and the Three-B pattern for more generic search quality evaluation based hybridisations.
Resumo:
The Hybrid Monte Carlo algorithm is adapted to the simulation of a system of classical degrees of freedom coupled to non self-interacting lattices fermions. The diagonalization of the Hamiltonian matrix is avoided by introducing a path-integral formulation of the problem, in d + 1 Euclidean space–time. A perfect action formulation allows to work on the continuum Euclidean time, without need for a Trotter–Suzuki extrapolation. To demonstrate the feasibility of the method we study the Double Exchange Model in three dimensions. The complexity of the algorithm grows only as the system volume, allowing to simulate in lattices as large as 163 on a personal computer. We conclude that the second order paramagnetic–ferromagnetic phase transition of Double Exchange Materials close to half-filling belongs to the Universality Class of the three-dimensional classical Heisenberg model.
Biased Random-key Genetic Algorithms For The Winner Determination Problem In Combinatorial Auctions.
Resumo:
Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.