958 resultados para Human leukemia cell lines


Relevância:

100.00% 100.00%

Publicador:

Resumo:

President George W. Bush's 2001 statement, which laid out guidelines for research that uses human embryonic stem cells to qualify for federal funding, intends to prevent new embryonic stem cell lines from being developed, by prohibiting the federal funding of research that uses embryonic stem cell lines other than those that existed at the time of the policy's inception and were approved by the National Institutes of Health. This policy raises questions of medical and technological ethics and the governments' role in making decisions regarding the advancement of science based on moral and political opinions. Federal stem cell usage policy directly affects scientific research efforts that are currently on the path to understanding the mechanisms of cell differentiation and could potentially offer answers and therapies for disabilities and many chronic diseases. By reviewing the current literature on the background information on human embryonic stem cells, including what they are, where they come from, how they are used for research purposes, and the ethical controversy surrounding their use, I have researched and reported the impact of the 2001 policy on medical research. ^ Both those who support the current policy on human embryonic stem cell research and those who are advocates for policy change have relevant arguments and varying opinions on human embryonic stem cell usage itself. The ethical implication of how embryonic stem cells are obtained has led to fierce debate. This paper presents many arguments for and against hESC research in addition to the policy governing their use. This analysis concludes that the current policy on federal funding of human embryonic stem cell research should be revised to allow research using new stem lines to be eligible for federal funding under specific guidelines. Supporting evidence for this recommendation is provided.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human lipocalin 2 is described as the neutrophil gelatinase-associated lipocalin (NGAL). The lipocalin 2 gene encodes a small, secreted glycoprotein that possesses a variety of functions, of which the best characterized function is organic iron binding activity. Elevated NGAL expression has been observed in many human cancers including breast, colorectal, pancreatic and ovarian cancers. I focused on the characterization of NGAL function in chronic myelogenous leukemia (CML) and breast cancer. Using the leukemic xenograft mouse model, we demonstrated that over-expression of NGAL in K562 cells, a leukemic cell line, led to a higher apoptotic rate and an atrophy phenotype in the spleen of inoculated mice compared to K562 cells alone. These results indicate that NGAL plays a primary role in suppressing hematopoiesis by inducing apoptosis within normal hematopoietic cells. In the breast cancer project, we analyzed two microarray data sets of breast cancer cell lines ( n = 54) and primary breast cancer samples (n = 318), and demonstrated that high NGAL expression is significantly correlated with several tumor characteristics, including negative estrogen receptor (ER) status, positive HER2 status, high tumor grade, and lymph node metastasis. Ectopic NGAL expression in non-aggressive (ZR75.1 and MCF7) cells led to aggressive tumor phenotypes in vitro and in vivo. Conversely, knockdown of NGAL expression in various breast cancer cell lines by shRNA lentiviral infection significantly decreased migration, invasion, and metastasis activities of tumor cells both in vitro and in vivo . It has been previously reported that transgenic mice with a mutation in the region of trans-membrane domain (V664E) of HER2 develop mammary tumors that progress to lung metastasis. However, we observed that genetic deletion of the 24p3 gene, a mouse homolog of NGAL, in HER2 transgenic mice by breeding with 24p3-null mice resulted in a significant delay of mammary tumor formation and reduction of lung metastasis. Strikingly, we also found that treatment with affinity purified 24p3 antibodies in the 4T1 breast cancer mice strongly reduced lung metastasis. Our studies provide evidence that NGAL plays a critical role in breast cancer development and progression, and thus NGAL has potential as a new therapeutic target in breast cancer.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidermal Growth Factor Receptor (EGFR) overexpression occurs in about 90% of Head and Neck Squamous Cell Carcinoma (HNSCC) cases. Aberrant EGFR signaling has been implicated in the malignant features of HNSCC. Thus, EGFR appears to be a logical therapeutic target with increased tumor specificity for the treatment of HNSCC. Erlotinib, a small molecule tyrosine kinase inhibitor, specifically inhibits aberrant EGFR signaling in HNSCC. Only a minority of HNSCC patients were able to derive a substantial clinical benefit from erlotinib. ^ This dissertation identifies Epithelial to Mesenchymal Transition (EMT) as the biological marker that distinguishes EGFR-dependent (erlotinib-sensitive) tumors from the EGFR-independent (erlotinib-resistant) tumors. This will allow us to prospectively identify the patients who are most likely to benefit from EGFR-directed therapy. More importantly, our data identifies the transcriptional repressor DeltaEF1 as the mesenchymal marker that controls EMT phenotype and resistance to erlotinib in human HNSCC lines. si-RNA mediated knockdown of DeltaEF1 in the erlotinib-resistant lines resulted in reversal of the mesenchymal phenotype to an epithelial phenotype and significant increase in sensitivity to erlotinib. ^ DeltaEF1 represses the expression of the epithelial markers by recruiting HDACs to chromatin. This observation allows us to translate our findings into clinical application. To test whether the transcriptional repression by DeltaEF1 underlines the mechanism responsible for erlotinib resistance, erlotinib-resistant lines were treated with an HDAC inhibitor (SAHA) followed by erlotinib. This resulted in a synergistic effect and substantial increase in sensitivity to erlotinib in the resistant cell lines. Thus, combining an HDAC inhibitor with erlotinib represents a novel promising pharmacologic strategy for reversing resistance to erlotinib in HNSCC patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic myeloid leukemia (CML), a myeloproliferative disorder, represents approximately 15-20% of all adult leukemia. The development of CML is clearly linked to the constitutively active protein-tyrosine kinase BCR-ABL, which is encoded by BCR-ABL fusion gene as the result of chromosome 9/22 translocation (Philadelphia chromosome). Previous studies have demonstrated that oxidative stress-associated genetic, metabolic and biological alterations contribute to CML cell survival and drug refractory. Mitochondria and NAD(P)H oxidase (NOX) are the major sources of BCR-ABL-induced cellular reactive oxygen species (ROS) production. However, it is still unknown how CML cells maintain the altered redox status, while escaping from the persistent oxidative stress-induced cell death. Therefore, elucidation of the mechanisms by which CML cells cope with oxidative stress will provide new insights into CML leukemogenesis. The major goal of this study is to identify the survival factors protecting CML cells against oxidative stress and develop novel therapeutic strategies to overcome drug resistance. Several experimental models were used to test CML cell redox status and cellular sensitivity to oxidative stress, including BCR-ABL inducible cell lines, BCR-ABL stably transformed cell lines and BCR-ABL-expressing CML blast crisis cells with differential BCL-XL/BCL-2 expressions. Additionally, an artificial CML cell model with heterogenic BCL-XL/BCL-2 expression was established to assess the correlation between differential survival factor expression patterns and cell sensitivity to Imatinib and oxidative stress. In this study, BCL-XL and GSH have been identified as the major survival factors responsive to BCR-ABL-promoted cellular oxidative stress and play a dominant role in regulating the threshold of oxidative stress-induced apoptosis. Cell survival factors BCL-XL and BCL-2 differentially protect mitochondria under oxidative stress. BCL-XL is an essential survival factor in preventing excessive ROS-induced cell death while BCL-2 seems to play a relatively minor role. Furthermore, the redox modulating reagent β-phenethyl isothiocyanate (PEITC) has been found to efficiently deplete GSH and induce potent cell killing effects in drug-resistant CML cells. Combination of PEITC with BCL-XL/BCL2 inhibitor ABT737 or suppression of BCL-XL by BCR-ABL inhibitor Gleevec dramatically sensitizes CML cells to apoptosis. These results have suggested that elevation of BCL-XL and cellular GSH are important for the development of CML, and that redox-directed therapy is worthy of further clinical investigations in CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoids have been found to be effective in the prevention of premalignant lesions and second primary cancers in the upper aerodigestive tract. Further development of retinoids for prevention and therapy of head and neck squamous cell carcinoma (HNSCC) requires a better understanding of their mechanism of action on the growth and differentiation of such cells. I have chosen to employ cultured HNSCC cell lines as a model system for investigating the mechanism underlying the effects of retinoids. These cells are useful because all-trans retinoic acid (ATRA) inhibits their proliferation. Furthermore, two HNSCC cell lines were found to express three squamous differentiation (SqD) markers characteristic of normal keratinocytes and ATRA suppressed the expression of these markers as reported for normal keratinocytes. It is thought that nuclear retinoic acid receptors (RARs and RXRs), which act as DNA-binding transcription modulating factors, mediate the effects of retinoids on the growth and differentiation of normal and tumor cells. I found that all four cell lines examined expressed RAR-$\alpha ,$ RAR-$\tau ,$ and RXR-$\alpha$ and three of four expressed RAR-$\beta .$ ATRA treatment increased the level of RAR-$\alpha ,$ -$\beta ,$ and -$\tau$ in four cell lines. Two HNSCC cell lines that exhibited a progressive increase in the expression of SqD markers during growth in culture also showed a concurrent decrease in RAR-$\beta$ level. Moreover, increasing concentrations of RA suppressed the SqD marker while inducing RAR-$\beta$ mRNA. Several synthetic retinoids which exhibit a preference for binding to specific nuclear RARs showed a differential ability to inhibit cell proliferation, transactivate transcription of the reporter genes (CAT and luciferase) from the RA response element (RARE) of the RAR-$\beta$ gene, and induce RAR-$\beta$ expression. Those retinoids that were effective inducers of RAR-$\beta$ also suppressed SqD effectively, indicating an inverse relationship exists between the expression of RAR-$\beta$ and SqD. This inverse relationship suggests a role for RAR-$\beta$ in the suppression of SqD. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

c-Src, a protein tyrosine kinase (PTK) the specific activity of which is increased $>$20-fold in $\sim$80% of colon tumors and colon tumor cell lines, plays a role in both growth regulation and tumorigenicity of colon tumor cells. To examine the effect of increased c-Src specific activity on colon tumor cells, coumarin-derived tyrosine analog PTK inhibitors were assessed in a standard colon tumor cell line, HT-29. Of the nine compounds tested for inhibiting c-Src activity in a standard immune complex kinase assay from c-Src precipitated from HT-29 cells, the 7,8-dihydroxy-containing compounds daphnetin and fraxetin were most effective, with IC$\sb{50}$s of 0.6 $\pm$ 0.2 mM and 0.6 $\pm$ 0.3 mM, respectively. Treatment of HT-29 cells with daphnetin resulted in inhibition of cell growth in a dose-dependent manner. In contrast, scopoletin, a relatively poor Src inhibitor in vitro, did not inhibit HT-29 cell growth in the concentration range tested. In daphnetin treated cells, a dose-dependent decrease of c-Src activity paralleling cell growth inhibition was also observed; the IC$\sb{50}$ was 0.3 $\pm$ 0.1 mM for c-Src autophosphorylation. In contrast, the IC$\sb{50}$ for c-Src protein level was $>$ 0.6 mM, indicating that the effects of daphnetin were primarily an enzymatic activity of c-Src, rather than protein level in HT-29 cells. These results are the first to demonstrate that c-Src specific activity regulates colon tumor cell growth.^ To elucidate the signaling pathways activated by c-Src in colon tumor cells, the Src family substrate FAK, which has been shown to play a role in both extracellular matrix-dependent cell growth and survival, was examined. Coprecipitation assays showed Src-FAK association in detergent insoluble fractions of both attached and detached HT-29 cells, indicating that Src-FAK association in HT-29 cells is stable and, unlike untransformed cells, not dependent on cell-substratum contact. FAK also coprecipitated with Grb2, an adaptor protein also playing a role in cell proliferation and survival, in both attached and detached HT-29 cells, suggesting that a Src-FAK-Grb2-mediated signaling pathway(s) in HT-29 cells is/are constitutively activated.^ FAK was also analyzed in c-src antisense HT-29 clones AS15 and AS33 in which c-Src is specifically reduced by transfection of an antisense expression vector. FAK protein level is unexpectedly decreased in both AS15 and AS33 cells by 5-fold and 1.5-fold compared to HT-29, respectively, corresponding with the decreased expression of c-Src observed in these cells. FAK protein level was not decreased compared to parental in the c-src "sense" clone S8. Northern blot analyses showed decreased FAK mRNA levels compared to parental in AS15 and AS33, correlating with decreased FAK protein level, indicating that FAK activity in the antisense cells is regulated, at least in part, by altering FAK expression, and that this regulation is Src dependent. Because FAK has been implicated in anoikis, the ability of c-src antisense cells to survive in the absence of cell-substratum contact was examined. Decreased cell survival is seen in both AS15 and AS33, correlating with the decreases in c-Src and FAK levels and tumorigenicity in these cells. These results suggest that at least one mechanism by which activation of c-Src contributes to tumorigenic phenotype of colon tumor cells is by aberrantly promoting a survival signal through unregulated Src-FAK-Grb2 complexes. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conflicting reports have appeared concerning the cell cycle regulation of telomerase activity and its possible repression during quiescence and cell differentiation. We have reexamined these issues in an attempt to uncover the basis for the discrepancies. Variations in extracted telomerase activity during the cell cycle are not observed in cells sorted on the basis of DNA content. Variations are observed in cells synchronized using some biochemical cell cycle inhibitors, but only with those agents where cellular toxicity is evident. A progressive decline in telomerase activity is observed in cells whose growth rate is reduced from seven to eight population doublings per week to one to two doublings per week. Telomerase is largely absent in cells that truly exit the cell cycle and do not divide over the 7-day period. Although it is not necessary for all cell types to regulate telomerase in the same way, we conclude that in the immortal cultured cell lines examined, extracted telomerase activity does not change significantly during progression through the stages of the cell cycle. Telomerase activity generally correlates with growth rate and is repressed in cells that exit the cell cycle and become quiescent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PML/RARα is the abnormal protein product generated by the acute promyelocytic leukemia-specific t(15;17). Expression of PML/RARα in hematopoietic precursor cell lines induces block of differentiation and promotes survival. We report here that PML/RARα has a potent growth inhibitory effect on all nonhematopoietic cell lines and on the majority of the hematopoietic cell lines tested. Inducible expression of PML/RARα in fibroblasts demonstrated that the basis for the growth suppression is induction of cell death. Deletion of relevant promyelocytic leukemia (PML) and retinoic acid receptor (RARα) domains within the fusion protein revealed that its growth inhibitory effect depends on the integrity of the PML aminoterminal region (RING, B1, B2, and coiled coil regions) and the RARα DNA binding region. Analysis of the nuclear localization of the same PML/RARα deletion mutants by immunofluorescence and cell fractionation revealed that the biological activity of the fusion protein correlates with its microspeckled localization and its association to the nuclear matrix. The PML aminoterminal region, but not the RARα zinc fingers, is required for the proper nuclear localization of PML/RARα. We propose that the matrix-associated microspeckles are the active sites of PML/RARα and that targeting of RARα sequences to this specific nuclear subdomain through PML sequences is crucial to the activity of the fusion protein on survival regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cellcell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human pluripotent stem cells would be invaluable for in vitro studies of aspects of human embryogenesis. With the goal of establishing pluripotent stem cell lines, gonadal ridges and mesenteries containing primordial germ cells (PGCs, 5–9 weeks postfertilization) were cultured on mouse STO fibroblast feeder layers in the presence of human recombinant leukemia inhibitory factor, human recombinant basic fibroblast growth factor, and forskolin. Initially, single PGCs in culture were visualized by alkaline phosphatase activity staining. Over a period of 7–21 days, PGCs gave rise to large multicellular colonies resembling those of mouse pluripotent stem cells termed embryonic stem and embryonic germ (EG) cells. Throughout the culture period most cells within the colonies continued to be alkaline phosphatase-positive and tested positive against a panel of five immunological markers (SSEA-1, SSEA-3, SSEA-4, TRA-1–60, and TRA-1–81) that have been used routinely to characterize embryonic stem and EG cells. The cultured cells have been continuously passaged and found to be karyotypically normal and stable. Both XX and XY cell cultures have been obtained. Immunohistochemical analysis of embryoid bodies collected from these cultures revealed a wide variety of differentiated cell types, including derivatives of all three embryonic germ layers. Based on their origin and demonstrated properties, these human PGC-derived cultures meet the criteria for pluripotent stem cells and most closely resemble EG cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have found conflicting associations between susceptibility to activation-induced cell death and the cell cycle in T cells. However, most of the studies used potentially toxic pharmacological agents for cell cycle synchronization. A panel of human melanoma tumor-reactive T cell lines, a CD8+ HER-2/neu-reactive T cell clone, and the leukemic T cell line Jurkat were separated by centrifugal elutriation. Fractions enriched for the G0–G1, S, and G2–M phases of the cell cycle were assayed for T cell receptor-mediated activation as measured by intracellular Ca2+ flux, cytolytic recognition of tumor targets, and induction of Fas ligand mRNA. Susceptibility to apoptosis induced by recombinant Fas ligand and activation-induced cell death were also studied. None of the parameters studied was specific to a certain phase of the cell cycle, leading us to conclude that in nontransformed human T cells, both activation and apoptosis through T cell receptor activation can occur in all phases of the cell cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IL-10-related T cell-derived inducible factor (IL-TIF or IL-21) is a new cytokine structurally related to IL-10 and originally identified in the mouse as a gene induced by IL-9 in T cells and mast cells. Here, we report the cloning of the human IL-TIF cDNA, which shares 79% amino acid identity with mouse IL-TIF and 25% identity with human IL-10. Recombinant human IL-TIF was found to activate signal transducer and activator of transcription factors-1 and -3 in several hepatoma cell lines. IL-TIF stimulation of HepG2 human hepatoma cells up-regulated the production of acute phase reactants such as serum amyloid A, α1-antichymotrypsin, and haptoglobin. Although IL-10 and IL-TIF have distinct activities, antibodies directed against the β chain of the IL-10 receptor blocked the induction of acute phase reactants by IL-TIF, indicating that this chain is a common component of the IL-10 and IL-TIF receptors. Similar acute phase reactant induction was observed in mouse liver upon IL-TIF injection, and IL-TIF expression was found to be rapidly increased after lipopolysaccharide (LPS) injection, suggesting that this cytokine contributes to the inflammatory response in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epothilones are naturally occurring, cytotoxic macrolides that function through a paclitaxel (Taxol)-like mechanism. Although structurally dissimilar, both classes of molecules lead to the arrest of cell division and eventual cell death by stabilizing cellular microtubule assemblies. The epothilones differ in their ability to retain activity against multidrug-resistant (MDR) cell lines and tumors where paclitaxel fails. In the current account, we focus on the relationship between epothilone and paclitaxel in the context of tumors with multiple drug resistance. The epothilone analogue Z-12,13-desoxyepothilone B (dEpoB) is >35,000-fold more potent than paclitaxel in inhibiting cell growth in the MDR DC-3F/ADX cell line. Various formulations, routes, and schedules of i.v. administration of dEpoB have been tested in nude mice. Slow infusion with a Cremophor-ethanol vehicle proved to be the most beneficial in increasing efficacy and decreasing toxicity. Although dEpoB performed similarly to paclitaxel in sensitive tumors xenografts (MX-1 human mammary and HT-29 colon tumor), its effects were clearly superior against MDR tumors. When dEpoB was administered to nude mice bearing our MDR human lymphoblastic T cell leukemia (CCRF-CEM/paclitaxel), dEpoB demonstrated a full curative effect. For human mammary adenocarcinoma MCF-7/Adr cells refractory to paclitaxel, dEpoB reduced the established tumors, markedly suppressed tumor growth, and surpassed other commonly used chemotherapy drugs such as adriamycin, vinblastine, and etoposide in beneficial effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomeres are essential for preserving chromosome integrity during the cell cycle and have been specifically implicated in mitotic progression, but little is known about the signaling molecule(s) involved. The human telomeric repeat binding factor protein (TRF1) is shown to be important in regulating telomere length. However, nothing is known about its function and regulation during the cell cycle. The sequence of PIN2, one of three human genes (PIN1-3) we previously cloned whose products interact with the Aspergillus NIMA cell cycle regulatory protein kinase, reveals that it encodes a protein that is identical in sequence to TRF1 apart from an internal deletion of 20 amino acids; Pin2 and TRF1 may be derived from the same gene, PIN2/TRF1. However, in the cell Pin2 was found to be the major expressed product and to form homo- and heterodimers with TRF1; both dimers were localized at telomeres. Pin2 directly bound the human telomeric repeat DNA in vitro, and was localized to all telomeres uniformly in telomerase-positive cells. In contrast, in several cell lines that contain barely detectable telomerase activity, Pin2 was highly concentrated at only a few telomeres. Interestingly, the protein level of Pin2 was highly regulated during the cell cycle, being strikingly increased in G2+M and decreased in G1 cells. Moreover, overexpression of Pin2 resulted in an accumulation of HeLa cells in G2+M. These results indicate that Pin2 is the major human telomeric protein and is highly regulated during the cell cycle, with a possible role in mitosis. The results also suggest that Pin2/TRF1 may connect mitotic control to the telomere regulatory machinery whose deregulation has been implicated in cancer and aging.