966 resultados para Human herpesvirus 4
Resumo:
Burkholderia cenocepacia is an opportunistic pathogen threatening patients with cystic fibrosis. Flagella are required for biofilm formation, as well as adhesion to and invasion of epithelial cells. Recognition of flagellin via the Toll-like receptor 5 (TLR5) contributes to exacerbate B. cenocepacia-induced lung epithelial inflammatory responses. In this study, we report that B. cenocepacia flagellin is glycosylated on at least 10 different sites with a single sugar, 4,6-dideoxy-4-(3-hydroxybutanoylamino)-d-glucose. We have identified key genes that are required for flagellin glycosylation, including a predicted glycosyltransferase gene that is linked to the flagellin biosynthesis cluster and a putative acetyltransferase gene located within the O-antigen lipopolysaccharide cluster. Another O-antigen cluster gene, rmlB, which is required for flagellin glycan and O-antigen biosynthesis, was essential for bacterial viability, uncovering a novel target against Burkholderia infections. Using glycosylated and nonglycosylated purified flagellin and a cell reporter system to assess TLR5-mediated responses, we also show that the presence of glycan in flagellin significantly impairs the inflammatory response of epithelial cells. We therefore suggest that flagellin glycosylation reduces recognition of flagellin by host TLR5, providing an evasive strategy to infecting bacteria.
Resumo:
Despite the best efforts of basic and applied science, the identity of the human "cough receptor" remains elusive. The attraction of identifying a single "catch all" cough receptor is obvious, although such an objective is unlikely to be realised given the concept of "cough hypersensitivity," which is now considered the most clinically relevant description of what underlies problem coughing. One means of progressing this area is to join the thinking and experimental effort of basic science and clinical research in an effective manner. Some of the best examples of cooperative and translational research over the years together with an update on the most recent work will be discussed in this article.
Resumo:
Objectives: A detailed investigation of the gross and microscopic anatomy of ligamentum flavum. Methods: Material included 14 lumbar vertebral columns obtained from the Anatomy Department, King Faisal University, Dammam during the period between January 2005 and January 2006. Height, width, and thickness of ligamenta flava were measured. A microscopic study was also performed. Computed tomography scan was carried out on the lumbar vertebrae of 30 patients for measuring the ligamentum flavum. Results: The anatomical results showed that the right and left ligamenta flava join in the midline forming an acute angle with a ventral opening. The ligamentum flavum is rectangular and has 4 borders and 2 surfaces. It is attached inferiorly to the superior edge and the postero-superior surface of the lamina below. It is attached superiorly to the inferior edge and the antero-inferior surface of the lamina above. Its height ranges from 14-22 mm. The width of its lower part ranges from 11-23 mm, and the thickness ranges from 3.5-6 mm. The histological results revealed that it is comprised chiefly of elastic fibres and some collagen fibres. Conclusion: The information reported in this study is of clinical value in the practice of lumbar epidural anesthesia or analgesia. Epidural puncture will be best performed through the lower and medial portion of the ligamentum flavum slightly lateral to the midline.
Resumo:
OBJECTIVE: The present work was planned to report the incidence of calcification and ossification of an isolated cranial dural fold. The form, degree of severity and range of extension of such changes will be described. Involvement of the neighboring brain tissue and blood vessels, whether meningeal or cerebral, will also be determined. The results of this study might highlight the occasional incidence of intracranial calcification and ossification in images of the head and their interpretation, by radiologists and neurologists, to be of dural or vascular origin.
METHODS: Two human formalin-fixed cadavers, one middle-aged female another older male, were investigated at the Anatomy Laboratory, College of Medicine, King Faisal University, Dammam, Kingdom of Saudi Arabia during the period from 2000 to 2003. In each cadaver, the skullcap was removed and the convexity of the cranial dura mater, as well as the individual dural folds, were carefully examined for any calcification or ossification. The meningeal and cerebral blood vessels together with the underlying brain were grossly inspected for such structural changes. Calcified or ossified tissues, when identified, were subjected to histological examination to confirm their construction.
RESULTS: The female cadaver showed a calcified parietal emissary vein piercing the skullcap and projecting into the scalp. The latter looked paler and deficient in hair on its right side. The base of the stump was surrounded by a granular patch of calcification. The upper convex border of the falx cerebri was hardened and it presented granules, plaques and a cauliflower mass, which all proved to be osseous in structure. The meningeal and right cerebral vessels were mottled with calcium granules. The underlying temporal and parietal lobes of the right cerebral hemisphere were degenerated. The male cadaver also revealed a calcified upper border of the falx cerebri and superior sagittal sinus. Osseous granules and plaques, similar to those of the first specimen, were also identified but without gross changes in the underlying brain.
CONCLUSION: Calcification or ossification of an isolated site of the cranial dura mater and the intracranial blood vessels might occur. These changes should be kept in mind while interpreting images of the skull and brain. Clinical assessment and laboratory investigations are required to determine whether these changes are idiopathic, traumatic, or as a manifestation of a generalized disease such as hyperparathyroidism, vitamin D-intoxication, or chronic renal failure.
Resumo:
The performances of four LC-MS/MS methodologies for determination of up to eight mycotoxin biomarkers in human urines were compared by involving three laboratories that analysed common urine samples spiked at two levels of each biomarker. Each laboratory received a calibration solution, spiked urines and the corresponding unspiked urine. The two spiking levels for each biomarker were chosen by considering the levels naturally occurring in human urines and the limits of quantification of the LC-MS/MS methodologies used by the participating laboratories. The results of each laboratory were evaluated for their z-score values. The percentage of satisfactory z-scores (vertical bar z vertical bar 2) were obtained for fumonisin B-1 (7/12 results), ochratoxin A (4/8 results) and alpha-zearalenol (1/8 results). The percentage of satisfactory z-scores for fumonisin B-1 and ochratoxin A increased from 42 to 83% for fumonisin B-1 and from 50 to 62% for ochratoxin A when laboratories 1 and 2 used own calibrants. Factors that could explain the different results obtained for fumonisin B-1 and ochratoxin A with provided and own calibration solutions could not be identified in this study and should be carefully investigated in future studies.
Resumo:
Background Human bone marrow-derived mesenchymal stem (stromal) cells (hMSCs) improve survival in mouse models of acute respiratory distress syndrome (ARDS) and reduce pulmonary oedema in a perfused human lung preparation injured with Escherichia coli bacteria. We hypothesised that clinical grade hMSCs would reduce the severity of acute lung injury (ALI) and would be safe in a sheep model of ARDS.
Methods Adult sheep (30–40 kg) were surgically prepared. After 5 days of recovery, ALI was induced with cotton smoke insufflation, followed by instillation of live Pseudomonas aeruginosa (2.5×1011 CFU) into both lungs under isoflurane anaesthesia. Following the injury, sheep were ventilated, resuscitated with lactated Ringer's solution and studied for 24 h. The sheep were randomly allocated to receive one of the following treatments intravenously over 1 h in one of the following groups: (1) control, PlasmaLyte A, n=8; (2) lower dose hMSCs, 5×106 hMSCs/kg, n=7; and (3) higher-dose hMSCs, 10×106 hMSCs/kg, n=4.
Results By 24 h, the PaO2/FiO2 ratio was significantly improved in both hMSC treatment groups compared with the control group (control group: PaO2/FiO2 of 97±15 mm Hg; lower dose: 288±55 mm Hg (p=0.003); higher dose: 327±2 mm Hg (p=0.003)). The median lung water content was lower in the higher-dose hMSC-treated group compared with the control group (higher dose: 5.0 g wet/g dry [IQR 4.9–5.8] vs control: 6.7 g wet/g dry [IQR 6.4–7.5] (p=0.01)). The hMSCs had no adverse effects.
Conclusions Human MSCs were well tolerated and improved oxygenation and decreased pulmonary oedema in a sheep model of severe ARDS.
Resumo:
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
Resumo:
This report surveys the legislative and judicial developments in human rights law within Northern Ireland in the years 2009 and 2010, highlighting the respects in which the law was or was not in compliance with international human rights standards, in particular those laid down in the European Convention on Human Rights.
Resumo:
Brain tissue from so-called Alzheimer's disease (AD) mouse models has previously been examined using H-1 NMR-metabolomics, but comparable information concerning human AD is negligible. Since no animal model recapitulates all the features of human AD we undertook the first H-1 NMR-metabolomics investigation of human AD brain tissue. Human post-mortem tissue from 15 AD subjects and 15 age-matched controls was prepared for analysis through a series of lyophilised, milling, extraction and randomisation steps and samples were analysed using H-1 NMR. Using partial least squares discriminant analysis, a model was built using data obtained from brain extracts. Analysis of brain extracts led to the elucidation of 24 metabolites. Significant elevations in brain alanine (15.4 %) and taurine (18.9 %) were observed in AD patients (p ≤ 0.05). Pathway topology analysis implicated either dysregulation of taurine and hypotaurine metabolism or alanine, aspartate and glutamate metabolism. Furthermore, screening of metabolites for AD biomarkers demonstrated that individual metabolites weakly discriminated cases of AD [receiver operating characteristic (ROC) AUC <0.67; p < 0.05]. However, paired metabolites ratios (e.g. alanine/carnitine) were more powerful discriminating tools (ROC AUC = 0.76; p < 0.01). This study further demonstrates the potential of metabolomics for elucidating the underlying biochemistry and to help identify AD in patients attending the memory clinic
Resumo:
Intake of heterocyclic amines (HCAs, carcinogens produced during cooking of meat/fish, the most abundant being PhIP, DiMeIQx and MeIQx) is influenced by many factors including type/thickness of meat and cooking method/temperature/duration. Thus, assessment of HCA dietary exposure is difficult. Protein adducts of HCAs have been proposed as potential medium-term biomarkers of exposure, e.g. PhIP adducted to serum albumin or haemoglobin. However, evidence is still lacking that HCA adducts are viable biomarkers in humans consuming normal diets. The FoodCAP project, supported by World Cancer Research Fund, developed a highly sensitive mass spectrometric method for hydrolysis, extraction and detection of acid-labile HCAs in blood and assessed their validity as biomarkers of exposure. Multiple acid/alkaline hydrolysis conditions were assessed, followed by liquid-liquid extraction, clean-up by cation-exchange SPE and quantification by UPLC-ESI-MS/ MS. Blood was analysed from volunteers who completed food diaries to estimate HCA intake based on the US National Cancer Institute’s CHARRED database. Standard HCAs were recovered quantitatively from fortified blood. In addition, PhIP/MeIQx adducts bound to albumin and haemoglobin prepared in vitro using a human liver microsome system were also detectable in blood fortified at low ppt concentrations. However, except for one sample (5pg/ml PhIP), acid-labile PhIP, 7,8-DiMeIQx, 4,8-DiMeIQx and MeIQx were not observed above the 2pg/ml limit of detection in plasma (n=35), or in serum, whole blood or purified albumin, even in volunteers with high meat consumption (nominal HCA intake >2µg/day). It is concluded that HCA blood protein adducts are not viable biomarkers of exposure. Untargeted metabolomic analyses may facilitate discovery of suitable markers.
Resumo:
Background Exercise training is considered an effective strategy to improve metabolic disease. Despite this, less is known regarding exercise training in the prevention and susceptibility of LDL subfraction oxidation, particularly in an aged population.
Methods Eleven aged (55 ± 4 yrs) and twelve young (21 ± 2 yrs) participants were randomly separated into an experimental or control group as follows: young exercise (n = 6); young control (n = 6); aged exercise (n = 6) and aged control (n = 5). The participants assigned to the exercise groups performed 12 weeks of moderate intensity (55–65% VO2max) exercise training. Venous blood was extracted at baseline, and 48 h following 12 weeks of exercise and assayed for a range of metabolites associated with lipid composition and lipoprotein susceptibility to oxidation.
Results Although there was no difference in the oxidation potential (time ½ max) of LDL I, II or III between groups at baseline (p > 0.05), there was an increase in time ½ max for LDL I following exercise within the aged exercise group (p < 0.05). Moreover, α-tocopherol concentration was selectively lower in the aged exercise group, compared to the young exercise at baseline. The lipid composition of LDL I, LDL II, LDL III, VLDL, HDL2, HDL3 and serum lipid hydroperoxides remained unchanged as a function of exercise training and ageing (p > 0.05).
Conclusion The primary finding of this study demonstrates that adaptations in LDL resistance to oxidation occur following 12 weeks of exercise training in the aged, and this may be of clinical significance, as oxidation of LDL has been implicated in atherosclerosis.
Resumo:
Background: Cigarette smoke induces a pro-inflammatory response in airway epithelial cells but it is not clear which of the various chemicals contained within cigarette smoke (CS) should be regarded as predominantly responsible for these effects. We hypothesised that acrolein, nicotine and acetylaldehyde, important chemicals contained within volatile cigarette smoke in terms of inducing inflammation and causing addiction, have immunomodulatory effects in primary nasal epithelial cell cultures (PNECs).
Methods: PNECs from 19 healthy subjects were grown in submerged cultures and were incubated with acrolein, nicotine or acetylaldehyde prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide (PA LPS). Experiments were repeated using cigarette smoke extract (CSE) for comparison. IL-8 was measured by ELISA, activation of NF-κB by ELISA and Western blotting, and caspase-3 activity by Western blotting. Apoptosis was evaluated using Annexin-V staining and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method.
Results: CSE was pro-inflammatory after a 24 h exposure and 42% of cells were apoptotic or necrotic after this exposure time. Acrolein was pro-inflammatory for the PNEC cultures (30 μM exposure for 4 h inducing a 2.0 fold increase in IL-8 release) and also increased IL-8 release after stimulation with PA LPS. In contrast, nicotine had anti-inflammatory properties (0.6 fold IL-8 release after 50 μM exposure to nicotine for 24 h), and acetylaldehyde was without effect. Acrolein and nicotine had cellular stimulatory and anti-inflammatory effects respectively, as determined by NF-κB activation. Both chemicals increased levels of cleaved caspase 3 and induced cell death.
Conclusions: Acrolein is pro-inflammatory and nicotine anti-inflammatory in PNEC cultures. CSE induces cell death predominantly by apoptotic mechanisms.