916 resultados para Homogenous catalysis
Resumo:
We describe a general likelihood-based 'mixture model' for inferring phylogenetic trees from gene-sequence or other character-state data. The model accommodates cases in which different sites in the alignment evolve in qualitatively distinct ways, but does not require prior knowledge of these patterns or partitioning of the data. We call this qualitative variability in the pattern of evolution across sites "pattern-heterogeneity" to distinguish it from both a homogenous process of evolution and from one characterized principally by differences in rates of evolution. We present studies to show that the model correctly retrieves the signals of pattern-heterogeneity from simulated gene-sequence data, and we apply the method to protein-coding genes and to a ribosomal 12S data set. The mixture model outperforms conventional partitioning in both these data sets. We implement the mixture model such that it can simultaneously detect rate- and pattern-heterogeneity. The model simplifies to a homogeneous model or a rate- variability model as special cases, and therefore always performs at least as well as these two approaches, and often considerably improves upon them. We make the model available within a Bayesian Markov-chain Monte Carlo framework for phylogenetic inference, as an easy-to-use computer program.
Resumo:
The present study explores for the first time, the effectiveness of photocatalytic oxidation of. humic acid (HA) in the increasingly important highly saline water. TiO2 (Degussa P25), TiO2 (Anatase), TiO2 (Rutile), TiO2 (Mesoporous) and ZnO dispersions were used as catalysts employing a medium pressure mercury lamp. The effect of platinum loading on P25 and zinc oxide was also investigated. The zinc oxide with 0.3% platinum loading was the most efficient catalyst. The preferred medium for the degradation of HA using ZnO is alkaline, whereas for TiO2 it is acidic. In addition, a comparative study of HA decomposition in artificial seawater (ASW) and natural seawater (NSW) is reported, and the surface areas and band gaps of the catalysts employed were also determined. A spectrophotometric method was used to estimate the extent of degradation of HA. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
It is generally thought that catalysts produced by incipient wetness impregnation (IW) are very poor for low temperature CO oxidation, and that it is necessary to use methods such as deposition-precipitation (DP) to make high activity materials. The former is true, indeed such IW catalysts are poor, and we present reactor data, XPS and TEM analysis which show that this is due to the very negative effect of the chloride anion involved in the preparation, which results in poisoning and excessive sintering of the Au particles. With the DP method, the chloride is largely removed during the preparation and so poisoning and sintering are avoided. However, we show here that, contrary to previous considerations, high activity catalysts can indeed be prepared by the incipient wetness method, if care is taken to remove the chloride ion during the process. This is achieved by using the double impregnation method (DIM). In this a double impregnation of chloroauric acid and a base are made to precipitate out gold hydroxide within the pores of the catalyst, followed by limited washing. This results in a much more active catalyst, which is active for CO oxidation at ambient temperature. The results for DIM and DP are compared, and it is proposed that the DIM method may represent an environmentally and economically more favorable route to high activity gold catalyst production. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Immobilised Os species prepared via chemical vapour deposition (CVD) of Os-3(CO)(12) onto MCM-41 are active and selective catalysts for the dihydroxylation of trans-stilbene in acetone and water, using N-methylmorpholine N-oxide as the oxidant. A detailed temperature programmed decomposition study of the solids enables to identify the active sites as Os-x(CO)(y) surface species. The initial loading of the MCM-41 with the trinuclear precursor, as well as the temperature of the post-synthesis oxidising treatment, are found to have a significant impact on the structure/geometry of the resulting surface species, and thus their catalytic properties. We show how it is also affected by the confined environment of the MCM-41 mesopores and especially the curvature of the 30 Angstrom diameter channels. Finally, a careful study of the catalytic properties of the materials together with a study of the reactivity of the reaction products under similar conditions enable to suggest a mechanism involving the reaction of the oxidant with the osmium carbonyl surface species to form the catalytically active Os-oxo sites, and the formation of an osmoate-type species (through adsorption of the alkene onto the Os-oxo site) which subsequently reacts with the solvent to produce the diol. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Metal organic chemical vapour deposition technique (MOCVD) has been used to immobilise Os species onto the internal porous structure of MCM-41. Evidence suggests that volatile Os-3(CO)(12) cluster reacts with surface silanol groups of the MCM-41 via an oxidative addition reaction to yield a trinuclear HOs3(CO)(10)(OSi-) surface species. After heat treatment in air or at their very low surface coverage, these triangular sites break up to partially oxidised mononuclear surface species. In the presence of tert-butyl hydroperoxide (TBHP) as an oxidant, we demonstrate that the mononuclear species form extremely active species that catalyse the oxidation of trans-stilbene selectively to the corresponding epoxide. By carefully controlling the parameters of the MOCVD method (loading and calcination temperature), we report a new class of optimised MCM-41 porous heterogeneous catalysts carrying isolated but active Os sites for the selective oxidation of trans-stilbene in liquid phase. The reaction selectivity of the solid supported Os is apparently higher than the soluble homogeneous Os-3(CO)(12) cluster. It is envisaged that our solid supported catalysts not only facilitate separation from products but also offer an excellent utilisation of Os for catalysis. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Two oxorhenium(V) complexes with bidentate phosphine ligands were synthesized and isolated as [ReOCl3(dppm)] 1 and [ReOCl3(dppp)] 2 [where dppm = 1,1-bis(diphenylphosphino) methane and dppp = 1.3-bis(diphenylphosphino) propanel. Complex 2 was structurally characterized. Both the complexes were used as catalysts in the epoxidation of olefins using NaHCO3 as co-catalyst and H2O2 as terminal oxidant. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Novel non-toxic poly(ethylene glycol)-supported 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) moieties are demonstrated to give an excellent interfacial catalysis for the selective oxidation of alcohols to the corresponding carbonyl species in biphasic media and investigation for the recovery of these new macromolecular catalysts via precipitation with diethyl ether after catalysis has also been briefly studied.
Resumo:
The selective catalytic oxidation of alcohols over a mixture of copper(l) chloride and a number of linear 'linker-less' or 'branched' poly(ethylene glycol)-supported nitroxyl radicals of the 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) family as a catalyst system has been investigated in the presence of molecular oxygen in a batch reactor. It is found that the activity profile of the polymer-supported nitroxyl radicals is in good agreement with that of low-molecular weight nitroxyl catalysts, for example, allylic and benzylic alcohols are oxidised faster than aliphatic alcohols. The oxidations can be tuned to be highly selective such that aldehydes are the only oxidation products observed in the oxidation of primary alcohols and the oxidations of secondary alcohols yield the corresponding ketones. A strong structural effect of the polymeric nitroxyl species on catalytic activity that is dependent upon their spatial orientation of the nitroxyl radicals is particularly noted. The new soluble macromolecular catalysts can be recovered readily from the reaction mixture by solvent precipitation and filtration. In addition, the recycled catalysts demonstrate a similar selectivity with only a small decrease in activity compared to the fresh catalyst even after five repetitive cycles. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The adsorption of CO has been measured on a 2.5 wt% Pt/TiO2 catalyst using TPD. A somewhat surprising observation is that (i) CO2 is produced, even though oxygen is not dosed into the system, (ii) repeated experiments result in the same amount of CO2 desorption. The results appear to be due to a combination of factors-(i) is due to spillover of CO from the Pt to the TiO2 support, while (ii) is due to the diffusion of Ti3+ into the bulk of the TiO2 crystallite, which effectively removes the surface non-stoichiometry which might otherwise be expected.
Resumo:
Intrinsically chiral metal and mineral surfaces show enantioselective behaviour without modifiers. Examples are artificial high-Miller-index surfaces of metal single crystals with cubic bulk lattice symmetry, which have no mirror planes and are therefore chiral, or surfaces of naturally occurring crystallites of some common minerals, such as alpha-quartz or calcite. Recent findings with regards to the surface geometry, reactivity and thermal stability of intrinsically chiral surfaces are discussed. A number of enantioselective effects have been reported in connection with the adsorption of small chiral molecules (e.g. alanine, cysteine) on intrinsically chiral surfaces under well-defined conditions. From a combination of experimental surface science techniques and theoretical ab initio model calculations it emerges that these effects are due to a combination of attractive and repulsive adsorbate-substrate and inter-adsorbate interactions.
Resumo:
Synthesis, testing and characterisation of bimetallic gold, Au-M on ceria as catalysts were carried out for low temperature water-gas shift reaction (WGS). Amongst the entire screened catalysts 3 wt% (AU-Pt)/CeO2 displayed the best WGS activity than the monometallic promotors, giving the light-off curve at the lowest temperature in the range 100-300 degrees C. (Au-Pd)/CeO2 also achieved the same activity but at a higher temperature. It was also found that WGS activity was strongly correlated with the surface reducibility which in turn depended on the modified local electronic band structure of promoted ceria. These results clearly suggest that the key role of bimetallic promoter may involve in facilitating the creation of defective reduced surface by exerting its local electronic effect on ceria to form the surface germinal -OH groups in water which act as active sites for enhanced WGS activity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The temperature dependent mixing of organic and fluorous phases is one of the key principals of fluorous biphasic systems (FBS). Given the high cost of the perfluorous solvents and their impacts to the environment, it is apparent that elimination of these solvents in bulk quantity in the FBS is advantageous. We report for the first time, the surface coverage of silica with a fluorous solvent like material that traps (at ambient temperatures) and releases (at elevated temperatures) a fluorous tin bromide in organic solvent. Here, we demonstrate the catalytic utilisation of this species for the hydrocyclisation of 6-bromo-1-hexene with NaBH4. (C) 2002 Elsevier Science B.V. All rights reserved.