906 resultados para High velocity oxy-fuel (HVOF) spraying


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of process variables on the quality of high-pressure die cast components was determined with the aid of in-cavity pressure sensors. In particular, the effects of set intensification pressure, delay time, and casting velocity have been investigated. The in-cavity pressure sensor has been used to determine how conditions within the die-cavity are related to the process parameters regulated by the die casting machine, and in turn the effect of variations in these parameters on the integrity of the final part. Porosity was found to decrease with increasing intensification pressure and increase with increasing casting velocity. The delay time before the application of the intensification pressure was not observed to have a significant effect on porosity levels. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In modern magnetic resonance imaging (MRI), both patients and radiologists are exposed to strong, nonuniform static magnetic fields inside or outside of the scanner, in which the body movement may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in the human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasistatic, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively-shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are easy to extrapolate to very high field strengths for the safety evaluation at a variety of field strengths and motion velocities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il lavoro consta di un’introduzione dedicata in primis alla presentazione formale di P. Oxy. XXIII 2382, di cui sono posti in evidenza i legami strutturali e concettuali con il racconto di Hdt. I 8-12. Segue dunque la trattazione dei problemi posti da P. Oxy. 2382, quello del genere letterario di appartenenza (tragedia o novella in versi?) e quello della datazione (età classica o età ellenistica?), finalizzata ad una puntuale definizione dello status quaestionis. Le conclusioni mettono in luce gli elementi a favore dell’ipotesi tragica: la presenza di paragraphoi e il passo di Ach. Tat. I 8 4-7 (corredato da un’appendice relativa alla storia del termine δρᾶμα: se e quando tale termine assume l’accezione di ‘narrazione romanzesca’?), nonché il soggetto storico (con un excursus relativo ai drammi di argomento storico). Si evidenziano infine gli elementi di debolezza contenuti nelle ipotesi avanzate da Cantarella (1952) e Lloyd-Jones (1953), propensi a ritenere P. Oxy. 2382 rispettivamente una novella in versi (il che offre lo spunto per una breve trattazione relativa alle caratteristiche contenutistiche e formali delle novelle milesie) e un giambo archilocheo, di cui il fr. 19 W.2 conserverebbe l’incipit. Quanto alla cronologia, sono enumerati i limiti della datazione alta, nonché gli elementi di affinità di P. Oxy. 2382 con la tragedia ellenistica; infine, pensando ad una possibile attribuzione, si propone, in termini puramente ipotetici, il confronto con l’esperienza della Pleiade alessandrina. Segue dunque un’analisi (laddove le condizioni dei testi, spesso frammentarie, lo consentano) dell’opera di Licofrone di Calcide, Sositeo e Sosifane di Siracusa, esponenti della Pleiade, nonché di Moschione ed Ezechiele, volta ad individuare elementi di continuità con P. Oxy. 2382. Il lavoro si conclude con l’edizione critica e il commento verso per verso di P. Oxy. XXIII 2382, corredati da un’appendice dedicata a P. Oxy. XLIV 3161, testo con notazioni musicali apparentemente affine a P. Oxy. XXIII 2382, costituito da 4 frr. notevolmente accidentati, di cui si fornisce l’edizione critica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a Laser Doppler Anemometer technique to measure the velocity distribution in a commercial plate heat exchanger is described. Detailed velocity profiles are presented and a preliminary investigation is reported on flow behaviour through a single cell in the channel matrix. The objective of the study was to extend previous investigations of plate heat exchanger flow patterns in the laminar range with the eventual aim of establishing the effect of flow patterns on heat transfer performance, thus leading to improved plate heat exchanger design and design methods. Accurate point velocities were obtained by Laser Anemometry in a perspex replica of the metal channel. Oil was used as a circulating liquid with a refractive index matched to that of the perspex so that the laser beams were not distorted. Cell-by-cell velocity measurements over a range of Reynolds number up to ten showed significant liquid mal-distribution. Local cell velocities were found to be as high as twenty seven times average velocity, contrary to the previously held belief of four times. The degree of mal-distribution varied across the channel as well as in the vertical direction, and depended on the upward or downward direction of flow. At Reynolds numbers less than one, flow zig-zagged from one side of the channel to the other in wave form, but increases in Reynolds number improved liquid distribution. A detailed examination of selected cells showed velocity variations in different directions, together with variation within individual cells. Experimental results are also reported on the flow split when passing through a single cell in a section of a channel . These observations were used to explain mal-distribution in the perspex channel itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ultrasonic thermometer has been developed for high temperature measurement over a wide temperature range. It is particularly suitable for use in measuring nuclear fuel rod centerline temperatures in advanced liquid metal and high flux nuclear reactors. The thermometer which was designed to determine fuel temperature up to the fuel melting point, utilizes the temperature dependence of the ultrasonic propagation velocity (related to the elastic modulus} in a thin rod sensor as the temperature transducing mechanism. A pulse excitation technique has been used, where the mechanical resonator at the remote end of the acoustic·line is madto vibrate. Its natural frequency is proportional to the ultrasonic velocity in the material. This is measured by the electronic instrumentation and enables a frequency­ temperature or period-temperature calibration to be obtained. A completely digital automatic instrument has been designed, constructed and tested to track the resonance frequency of the temperature sensors. It operates smoothly over a frequency range of about 30%, more than the maximum working range of most probe materials. The control uses the basic property of a resonator that the stored energy decays exponentially at the natural frequency of the resonator.The operation of the electronic system is based on a digital multichannel transmitter that is capable of operating with a predefined number of cycles in the burst. this overcomes a basic defect in the previous deslgn where the analogue time-delayed circuits failed to hold synchronization and hence automatic control could be lost. Development of a particular type of temperature probe, that is small enough to fit into a standard 2 mm reactor tube has made the ultrasonic thermometer a practicable device for measuring fuel temperature. The bulkiness of previous probes has been overcome, the new design consists of a tuning fork, integral with a 1mm line, while maintaining a frequency of no more than 100 kHz. A magnetostrictive rod, acoustically matched to the probe is used to launch and receive the acoustic oscillations. This requires a magnetic bias and the previously used bulky magnets have been replaced by a direct current coil. The probe is supported by terminating the launcher with a short heavy isolating rod which can be secured to the reactor structure. This support, the bias and launching coil and the launcher are made up into a single compact unit. On the material side an extensive study of a wide range of refractory materials identified molybdenum, iridium, rhenium and tungsten as satisfactory for a number of applications but mostly exhibiting to some degree a calibration drift with thermal cycling. When attention was directed to ceramic materials, Sapphire (single crystal alumina) was found to have numerous advantages, particularly in respect of stability of calibration which remained with ±2°C after many cycles to 1800oC. Tungsten and thoriated tungsten (W - 2% Tho2) were also found to be quite satisfactory to 1600oC, the specification for a Euratom application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of the work is to investigate sequential pyrolysis of willow SRC using two different heating rates (25 and 1500 °C/min) between 320 and 520 °C. Thermogravimetric analysis (TGA) and pyrolysis - gas chromatography - mass spectroscopy (Py-GC-MS) have been used for this analysis. In addition, laboratory scale processing has been undertaken to compare product distribution from fast and slow pyrolysis at 500 °C. Fast pyrolysis was carried out using a 1 kg/h continuous bubbling fluidized bed reactor, and slow pyrolysis using a 100 g batch reactor. Findings from this study show that heating rate and pyrolysis temperatures have a significant influence on the chemical content of decomposition products. From the analytical sequential pyrolysis, an inverse relationship was seen between the total yield of furfural (at high heating rates) and 2-furanmethanol (at low heating rates). The total yield of 1,2-dihydroxybenzene (catechol) was found to be significant higher at low heating rates. The intermediates of catechol, 2-methoxy-4-(2-propenyl)phenol (eugenol); 2-methoxyphenol (guaiacol); 4-Hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde) and 4-hydroxy-3-methoxybenzaldehyde (vanillin), were found to be highest at high heating rates. It was also found that laboratory scale processing alters the pyrolysis bio-oil chemical composition, and the proportions of pyrolysis product yields. The GC-MS/FID analysis of fast and slow pyrolysis bio-oils reveals significant differences. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rotating fluidised Beds offer the potential for high intensity combustion, large turndown and extended range of fluidising velocity due to the imposition of an artificial gravitational field. Low thermal capacity should also allow rapid response to load changes. This thesis describes investigations of the validity of these potential virtues. Experiments, at atmospheric pressure, were conducted in flow visualisation rigs and a combustor designed to accommodate a distributor 200mm diameter and 80mm axial length. Ancillary experiments were conducted in a 6" diameter conventional fluidised bed. The investigations encompassed assessment of; fluidisation and elutriation, coal feed requirements, start-up and steady-state combustion using premixed propane and air, transition from propane to coal combustion and mechanical design. Assessments were made of an elutriation model and some effects of particle size on the combustion of premixed fuel gas and air. The findings were: a) more reliable start-up and control methods must be developed. Combustion of premixed propane and air led to severe mechanical and operating problems. Manual control of coal combustion was inadequate. b) Design criteria must encompass pressure loss, mechanical strength and high temperature resistance. The flow characteristics of ancillaries and the distributor must be matcheo. c) Fluidisation of a range of particle sizes was investigated. New correlations for minimum fluidisation and fully supported velocities are proposed. Some effects on elutriation of particle size and the distance between the bed surface and exhaust port have been identified. A conic distributor did not aid initial bed distribution. Furthermore, airflow instability was encountered with this distributor shape. Future use of conic distributors is not recommended. Axial solids mixing was found to be poor. A coal feeder was developed which produced uniform fuel distribution throughout the bed. The report concludes that small scale inhibits development of mechanical design and exploration of performance. future research requires larger combustors and automatic control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An initial review of the subject emphasises the need for improved fuel efficiency in vehicles and the possible role of aluminium in reducing weight. The problems of formability generally in manufacture and of aluminium in particular are discussed in the light of published data. A range of thirteen commercially available sheet aluminium alloys have been compared with respect to mechanical properties as these affect forming processes and behaviour in service. Four alloys were selected for detailed comparison. The formability and strength of these were investigated in terms of underlying mechanisms of deformation as well as the microstructural characteristics of the alloys including texture, particle dispersion, grain size and composition. In overall terms, good combinations of strength and ductility are achievable with alloys of the 2xxx and 6xxx series. Some specific alloys are notably better than others. The strength of formed components is affected by paint baking in the final stages of manufacture. Generally, alloys of the 6xxx family are strengthened while 2xxx and 5xxx become weaker. Some anomalous behaviour exists, however. Work hardening of these alloys appears to show rather abrupt decreases over certain strain ranges which is probably responsible for the relatively low strains at which both diffuse and local necking occur. Using data obtained from extended range tensile tests, the strain distribution in more complex shapes can be successfully modelled using finite element methods.Sheet failure during forming occurs by abrupt shear fracture in many instances. This condition is favoured by states of biaxial tension, surface defects in the form of fine scratches and certain types of crystallographic texture. The measured limit strains of the materials can be understood on the basis of attainment of a critical shear stress for fracture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes work completed on the application of H controller synthesis to the design of controllers for single axis high speed independent drive design examples. H controller synthesis was used in a single controller format and in a self-tuning regulator, a type of adaptive controller. Three types of industrial design examples were attempted using H controller synthesis, both in simulation and on a Drives Test Facility at Aston University. The results were benchmarked against a Proportional, Integral and Derivative (PID) with velocity feedforward controller (VFF), the industrial standard for this application. An analysis of the differences between a H and PID with VFF controller was completed. A direct-form H controller was determined for a limited class of weighting function and plants which shows the relationship between the weighting function, nominal plant and the controller parameters. The direct-form controller was utilised in two ways. Firstly it allowed the production of simple guidelines for the industrial design of H controllers. Secondly it was used as the controller modifier in a self-tuning regulator (STR). The STR had a controller modification time (including nominal model parameter estimation) of 8ms. A Set-Point Gain Scheduling (SPGS) controller was developed and applied to an industrial design example. The applicability of each control strategy, PID with VFF, H, SPGS and STR, was investigated and a set of general guidelines for their use was determined. All controllers developed were implemented using standard industrial equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of waveguides was inscribed in a borosilicate glass (BK7) by an 11 MHz repetition rate femtosecond laser operating with pulse energies from 16 to 30 nJ and focused at various depths within the bulk material. The index modification was measured using a quantitative phase microscopy technique that revealed central index changes ranging from 5×10-3 to 10-2, leading to waveguides that exhibited propagation losses of 0.2 dB/cm at a wavelength of 633 nm and 0.6 dB/cm at a wavelength of 1550 nm with efficient mode matching, less than 0.2 dB, to standard optical fibers. Analysis of the experimental data shows that, for a given inscription energy, the index modification has a strong dependence on inscription scanning velocity. At higher energies, the index modification increases with increasing inscription scanning velocity with other fabrication parameters constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium nitride (TiN) thin films are coated on HT-9 and MA957 fuel cladding tubes and bars to explore their mechanical strength, thermal stability, diffusion barrier properties, and thermal conductivity properties. The ultimate goal is to implement TiN as an effective diffusion barrier to prevent the inter-diffusion between the nuclear fuel and the cladding material, and thus lead to a longer lifetime of the cladding tubes. Mechanical tests including hardness and scratch tests for the samples before and after thermal cycle tests show that the films have a high hardness of 28GPa and excellent adhesion properties despite the thermal treatment. Thermal conductivity measurements demonstrate that the thin TiN films have very minimal impact on the overall thermal conductivity of the MA957 and HT-9 substrates, i.e., the thermal conductivity of the uncoated HT-9 and MA957 substrates was 26.25 and 28.44 W m-1 K-1, and that of the coated ones was 26.21 and 28.38W m-1 K-1, respectively. A preliminary Ce diffusion test on the couple of Ce/TiN/HT-9 suggests that TiN has excellent material compatibility and good diffusion barrier properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brewers spent grain (BSG) is a widely available feedstock representing approximately 85% of the total by-products generated in the brewing industry. This is currently either disposed of to landfill or used as cattle feed due to its high protein content. BSG has received little or no attention as a potential energy resource, but increasing disposal costs and environmental constraints are now prompting the consideration of this. One possibility for the utilisation of BSG for energy is via intermediate pyrolysis to produce gases, vapours and chars. Intermediate pyrolysis is characterised by indirect heating in the absence of oxygen for short solids residence times of a few minutes, at temperatures of 350-450 °C. In the present work BSG has been characterised by chemical, proximate, ultimate and thermo-gravimetric analysis. Intermediate pyrolysis of BSG at 450 °C was carried out using a twin coaxial screw reactor known as Pyroformer to give yields of char 29%, 51% of bio-oil and 19% of permanent gases. The bio-oil liquid was found to separate in to an aqueous phase and organic phase. The organic phase contained viscous compounds that could age over time leading to solid tars that can present problems in CHP application. The quality of the pyrolysis vapour products before quenching can be upgraded to achieve much improved suitability as a fuel by downstream catalytic reforming. A Bench Scale batch pyrolysis reactor has then been used to pyrolyse small samples of BSG under a range of conditions of heating rate and temperature simulating the Pyroformer. A small catalytic reformer has been added downstream of the reactor in which the pyrolysis vapours can be further cracked and reformed. A commercial reforming nickel catalyst was used at 500, 750 and 850 °C at a space velocity about 10,000 L/h with and without the addition of steam. Results are presented for the properties of BSG, and the products of the pyrolysis process both with and without catalytic post-processing. Results indicate that catalytic reforming produced a significant increase in permanent gases mainly (H2 and CO) with H2 content exceeding 50 vol% at higher reforming temperatures. Bio-oil yield decreased significantly as reforming temperature increased with char remaining the same as pyrolysis condition remained unchanged. The process shows an increase in heating value for the product gas ranging between 10.8-25.2 MJ/m as reforming temperature increased. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using multiple sensors is inherently more accurate than using a single pressure reading to estimate depth. Second, common mode temperature induced wavelength shifts in the individual sensors are automatically compensated. Thirdly, temperature induced changes in the sensor pressure sensitivity are also compensated. Fourthly, the approach provides the possibility to detect and compensate for malfunctioning sensors. Finally, the system is immune to changes in the density of the monitored fluid and even to changes in the effective force of gravity, as might be obtained in an aerospace application. The performance of an individual sensor was characterized and displays a sensitivity (54 pm/cm), enhanced by more than a factor of 2 when compared to a sensor head configuration based on a silica FBG published in the literature, resulting from the much lower elastic modulus of POF. Furthermore, the temperature/humidity behavior and measurement resolution were also studied in detail. The proposed configuration also displays a highly linear response, high resolution and good repeatability. The results suggest the new configuration can be a useful tool in many different applications, such as aircraft fuel monitoring, and biochemical and environmental sensing, where accuracy and stability are fundamental. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conventional, geometrically lumped description of the physical processes inside a high shear granulator is not reliable for process design and scale-up. In this study, a compartmental Population Balance Model (PBM) with spatial dependence is developed and validated in two lab-scale high shear granulation processes using a 1.9L MiPro granulator and 4L DIOSNA granulator. The compartmental structure is built using a heuristic approach based on computational fluid dynamics (CFD) analysis, which includes the overall flow pattern, velocity and solids concentration. The constant volume Monte Carlo approach is implemented to solve the multi-compartment population balance equations. Different spatial dependent mechanisms are included in the compartmental PBM to describe granule growth. It is concluded that for both cases (low and high liquid content), the adjustment of parameters (e.g. layering, coalescence and breakage rate) can provide a quantitative prediction of the granulation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste biomass is generated during the conservation management of semi-natural habitats, and represents an unused resource and potential bioenergy feedstock that does not compete with food production. Thermogravimetric analysis was used to characterise a representative range of biomass generated during conservation management in Wales. Of the biomass types assessed, those dominated by rush (Juncus effuses) and bracken (Pteridium aquilinum) exhibited the highest and lowest volatile compositions respectively and were selected for bench scale conversion via fast pyrolysis. Each biomass type was ensiled and a sub-sample of silage was washed and pressed. Demineralization of conservation biomass through washing and pressing was associated with higher oil yields following fast pyrolysis. The oil yields were within the published range established for the dedicated energy crops miscanthus and willow. In order to examine the potential a multiple output energy system was developed with gross power production estimates following valorisation of the press fluid, char and oil. If used in multi fuel industrial burners the char and oil alone would displace 3.9 × 105 tonnes per year of No. 2 light oil using Welsh biomass from conservation management. Bioenergy and product development using these feedstocks could simultaneously support biodiversity management and displace fossil fuels, thereby reducing GHG emissions. Gross power generation predictions show good potential.