930 resultados para High temperature fatigue life assessment
Resumo:
Banana lectin (Banlec) is a homodimeric non-glycosylated protein. It exhibits the b-prism I structure. High-temperature molecular dynamics simulations have been utilized to monitor and understand early stages of thermally induced unfolding of Banlec. The present study elucidates the behavior of the dimeric protein at four different temperatures and compares the structural and conformational changes to that of the minimized crystal structure. The process of unfolding was monitored by following the radius of gyration, the rms deviation of each residue, change in relative solvent accessibility and the pattern of inter- and intra-subunit interactions. The overall study demonstrates that the Banlec dimer is a highly stable structure, and the stability is mostly contributed by interfacial interactions. It maintains its overall conformation during high-temperature (400–500 K) simulations, with only the unstructured loop regions acquiring greater momentum under such condition. Nevertheless, at still higher temperatures (600 K) the tertiary structure is gradually lost which later extends to loss of secondary structural elements. The pattern of hydrogen bonding within the subunit and at the interface across different stages has been analyzed and has provided rationale for its intrinsic high stability.
Resumo:
Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.
Resumo:
Background Calcification is commonly believed to be associated with cardiovascular disease burden. But whether or not the calcifications have a negative effect on plaque vulnerability is still under debate. Methods and Results Fatigue rupture analysis and the fatigue life were used to evaluate the rupture risk. An idealized baseline model containing no calcification was first built. Based on the baseline model, we investigated the influence of calcification on rupture path and fatigue life by adding a circular calcification and changing its location within the fibrous cap area. Results show that 84.0% of calcified cases increase the fatigue life up to 11.4%. For rupture paths 10D far from the calcification, the life change is negligible. Calcifications close to lumen increase more fatigue life than those close to the lipid pool. Also, calcifications in the middle area of fibrous cap increase more fatigue life than those in the shoulder area. Conclusion Calcifications may play a positive role in the plaque stability. The influence of the calcification only exists in a local area. Calcifications close to lumen may be influenced more than those close to lipid pool. And calcifications in the middle area of fibrous cap are seemly influenced more than those in the shoulder area.
Resumo:
The effect of moisture content and storage temperature on the high quality storage life on macadamia nut-in-shell (NIS), and the subsequent influence of NIS storage on the shelf-life of roasted kernel, is being investigated. Macadamia integrifolia 'Keauhou" (HAES 246) NIS is being stored at 5°, 25°C and 40°C with a moisture content of 15.0, 12.5, 10.0, 7.5 and 3.5% for a maximum of 12 months. Preliminary results showed that unacceptable levels of visual mould developed on NIS with 15.0 and 12.5% moisture at 25°C following relatively short periods of storage. Discolouration and the production of an off-flavour in the raw kernel resulted after 1 month's storage of NIS with a moisture content of 10.0% at 40°C. Roasting times were reduced with increased storage duration of NIS with a moisture content of 15.0, 12.5 and 10.0% at 25°C, 15.0 and 12.5% at 5°C and 3.5% at 40°C. The percentage of roasted kernel rejects increased with increased storage duration of NIS with a moisture content of 15.0 and 12.5% at 25°C.
Resumo:
Regional metamorphic belts provide important constraints on the plate tectonic architecture of orogens. We report here a detailed petrologic examination of the sapphirine-bearing ultra-high temperature (UHT) granulites from the Jining Complex within the Khondalite Belt of the North China Craton (NCC). These granulites carry diagnostic UHT assemblages and their microstructures provide robust evidence to trace the prograde, peak and retrograde metamorphic evolution. The P–T conditions of the granulites estimated from XMgGrt(Mg/Fe + Mg) − XMgSpr isopleth calculations indicate temperature above 970 °C and pressures close to 7 kbar. We present phase diagrams based on thermodynamic computations to evaluate the mineral assemblages and microstructures and trace the metamorphic trajectory of the rocks. The evolution from Spl–Qtz–Ilm–Crd–Grt–Sil to Spr–Qtz–Crd–Opx–Ilm marks the prograde stage. The Spl–Qtz assemblage appears on the low-pressure side of the P–T space with Spr–Qtz stable at the high-pressure side, possibly representing an increase in pressure corresponding to compression. The spectacular development of sapphirine rims around spinel enclosed in quartz supports this inference. An evaluation of the key UHT assemblages based on model proportion calculation suggests a counterclockwise P–T path. With few exceptions, granulite-facies rocks developed along collisional metamorphic zones have generally been characterized by clockwise exhumation trajectories. Recent evaluation of the P–T paths of metamorphic rocks developed within collisional orogens indicates that in many cases the exhumation trajectories follow the model subduction geotherm, in accordance with a tectonic model in which the metamorphic rocks are subducted and exhumed along a plate boundary. The timing of UHT metamorphism in the NCC (c. 1.92 Ga) coincides with the assembly of the NCC within the Paleoproterozoic Columbia supercontinent, a process that would have involved subduction of passive margins sediments and closure of the intervening ocean. Thus, the counterclockwise P–T path obtained in this study correlates well with a tectonic model involving subduction and final collisional suturing, with the UHT granulites representing the core of the hot or ultra-hot orogen developed during Columbia amalgamation.
Resumo:
The impression creep behaviour of zinc is studied in the range 300 to 500 K and the results are compared with the data from conventional creep tests. The steady-state impression velocity is found to exhibit the same stress and temperature dependence as in conventional tensile creep with the same power law stress exponent. Also studied is the effect of indenter size on the impression velocity. The thermal activation parameters for plastic flow at high temperatures derived from a number of testing techniques agree reasonably well. Grain boundary sliding is shown to be unimportant in controlling the rate of plastic flow at high temperatures. It is observed that the Cottrell-Stokes law is obeyed during high-temperature deformation of zinc. It is concluded that a mechanism such as forest intersection involving attractive trees controls the high-temperature flow rather than a diffusion mechanism.
Resumo:
Three new three-dimensional zinc-triazolate-oxybis(benzoate) compounds. [{Zn-3(H2O)(2)}{C12H8O(COO)(2)}(2)-{C2H2N3}(2)]center dot 2H(2)O(I), [Zn-7{C12H8O(COO)(2)}(4){C2H2N3}(6)]center dot H2O, (II), and[{Zn-5(OH)(2)}{C12H8O(COO)(2)}(3){C2H2N3}(2)] (III), synthesized by a hydrothermal reaction of a mixture of Zn(OAc)(2)center dot 2H(2)O, 4,4'-oxybis(benzoic acid), 1,2,4-triazole, NaOH, and water. Compound I has an interpenetrated diamond structure and II and III have pillared-layer related structures. The formation of a hydrated phase (I) at low temperature and a completely dehydrated phase (III) at high temperature suggests the importance of thermodynamic factors in the formation of three compounds. Transformation studies of I in the presence of water shows the formation of a simple Zn-OBA compound, [Zn(OBA)(H2O)] (IV), at 150 and 180 degrees C and compound III at 200 degrees C. The compounds have been characterized by single-crystal X-ray diffraction, powder X-ray diffraction. thermogravimetric analysis, IR, and photoluminescence studies.
Resumo:
Structural defects of three chloritoid minerals from distinet geologic melieu have been investigated by high resolution electron microscopy. X-ray powder and electron diffraction patterns indicate that the chloritoid from one geological source (A) is2M 1+2M2 monoclinic variant while those from another geological source (B) are 2M 2 monoclinic variants. In a typical one-dimensional lattice image of a crystal from sourceA, the 2M 2 matrix is broken by insertion of triclinic inter-growths. Another crystal with the 2M 2 matrix showed single, triple, quadruple and quintuple layers displaying an unusually high degree of disorder. Lattice images of 2M 2 monoclinic variants from sourceB yielded more homogeneous micrographs. The important finding from the present studies is that the chloritoid from sourceA is a severely disordered low-temperature intermediate phase in the conversion of the triclinic chloritoid to the high-temperature ordered monoclinic variants of sourceB. Severely disordered chloritoids, marking the beginning of low grade metamorphism, are generated as intermediates between the state of complete disordered arrangement towards the end of low grade metamorphism within the narrow stability range of 400°–500°C.
Resumo:
Pythium soft rot (PSR) of ginger caused by a number of Pythium species is of the most concern worldwide. In Australia, PSR outbreaks associated with Pythium myriotylum was recorded in 2007. Our recent pathogenicity tests in Petri dishes conducted on ginger rhizomes and pot trials on ginger plants showed that Pythiogeton (Py.) ramosum, an uncommon studied oomycete in Pythiaceae, was also pathogenic to ginger at high temperature (30–35 °C). Ginger sticks excised from the rhizomes were colonised by Py. ramosum which caused soft rot and browning lesions. Ginger plants inoculated with Py. ramosum showed initial symptoms of wilting and leave yellowing, which were indistinguishable from those of Pythium soft rot of ginger, at 10 days after inoculation. In addition, morphological and phylogenetic studies indicated that isolates of Py. ramosum were quite variable and our isolates obtained from soft rot ginger were divided into two groups based on these variations. This is also for the first time Py. ramosum is reported as a pathogen on ginger at high temperatures.
Resumo:
Sr2SbMnO6 (SSM) powders were successfully synthesized at reasonably low temperatures via molten-salt synthesis (MSS) method using eutectic composition of 0.635 Li2SO4-0.365 Na2SO4 (flux). High-temperature cubic phase SSM was stabilized at room temperature by calcining the as-synthesized powders at 900 degrees C/10 h. The phase formation and morphology of these powders were characterized via X-ray powder diffraction and scanning electron microscopy, respectively. The SSM phase formation associated with similar to 60 nm sized crystallites was also confirmed by transmission electron microscopy. The activation energy associated with the particle growth was found to be 95 +/- 5 kJ mol(-1). The dielectric constant of the tetragonal phase of the ceramic (fabricated using this cubic phase powder) with and without the flux (sulphates) has been monitored as a function of frequency (100 Hz-1 MHz) at room temperature. Internal barrier layer capacitance (IBLC) model was invoked to rationalize the dielectric properties.
Resumo:
Introduction The Elaborated Intrusion Theory of Desire holds that desires for functional and dysfunctional goals share a common form. Both are embodied cognitive events, characterised by affective intensity and frequency. Accordingly, we developed scales to measure motivational cognitions for functional goals (Motivational Thought Frequency, MTF; State Motivation, SM), based on the existing Craving Experience Questionnaire (CEQ). When applied to increasing exercise, MTF and SM showed the same three-factor structure as the CEQ (Intensity, Imagery, Availability). The current study tested the internal structure and concurrent validity of the MTF and SM Scales when applied to control of alcohol consumption (MTF-A; SM-A). Methods Participants (N = 417) were adult tertiary students, staff or community members who had recently engaged in high-risk drinking or were currently trying to control alcohol consumption. They completed an online survey comprising the MTF-A, SM-A, Alcohol Use Disorders Identification Test (AUDIT), Readiness to Change Questionnaire (RCQ) and demographics. Results Confirmatory Factor Analysis gave acceptable fit for the MTF-A, but required the loss of one SM-A item, and was improved by intercorrelations of error terms. Higher scores were associated with more severe problems on the AUDIT and with higher Contemplation and Action scores on the RCQ. Conclusions The MTF-A and SM-A show potential as measures of motivation to control drinking. Future research will examine their predictive validity and sensitivity to change. The scales' application to both increasing functional and decreasing dysfunctional behaviours is consistent with EI Theory's contention that both goal types operate in similar ways.
Resumo:
High-pressure Raman and mid-infrared spectroscopic studies were carried out on ZrP2O7 to 23.2 and 13 GPa respectively. In the pressure range 0.7-4.3 GPa the lattice mode at 248 cm(-1) disappears, new modes appear around 380 and 1111 cm(-1) and the strong symmetric stretching mode at 476 cm(-1) softens, possibly indicating a subtle phase transition. Above 8 GPa all the modes broaden, and all of the Raman modes disappear beyond 18 GPa. On decompression from the highest pressure, 23.2, to 0 GPa all of the modes reappear but with larger full width at half maximum. Lattice dynamics of the high temperature phase of ZrP2O7 were studied using first principles method and compared with experimental values. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Suitable pin-to-hole interference can significantly increase the fatigue life of a pin joint. In practical design, the initial stresses due to interference are high and they are proportional to the effective interference. In experimental studies on such joints, difficulties have been experienced in estimating the interference accurately from physical measurements of pin and hole diameters. A simple photoelastic method has been developed to determine the effective interference to a high degree of accuracy. This paper presents the method and reports illustrative data from a successful application thereof.
Resumo:
Composites are finding increasing application in many advanced engineering fields like aerospace, marine engineering, hightech sports equipment, etc., due to their high specific strength and/or specific stiffness values. The use of composite components in complex situations like airplane wing root or locations of concentrated load transfer is limited due to the lack of complete understanding of their behaviour in the region of joints. Joints are unavoidable in the design and manufacture of complex structures. Pin joints are one of the most commonly used methods of connection. In regions of high stresses like airplane wing root joints interference fit pins are used to increase its fatigue life and thereby increase the reliability of the whole structure. The present contribution is a study on the behaviour of the interference fit pin in a composite plate subjected to both pull and push type of loads. The interference fit pin exhibits partial contact/separation under the loads and the contact region is a non-linear function of the load magnitude. This non-linear behaviour is studied by adopting the inverse technique and some new results are presented in this paper.
Resumo:
The effect of scarification, ploughing and cross-directional plouhing on temperature conditions in the soil and adjacent air layer have been studied during 11 consecutive growth periods by using an unprepared clear-cut area as a control site. The maximum and minimum temperatures were measured daily in the summer months, and other temperature observations were made at four-hour intervals by means of a Grant measuring instrument. The development of the seedling stand was also followed in order to determine its shading effect on the soil surface. Soil preparation decreased the daily temperature amplitude of the air at the height of 10 cm. The maximum temperatures on sunny days were lower in the tilts of the ploughed and in the humps of the cross-directional ploughed sites compared with the unprepared area. Correspondingly, the night temperatures were higher and so the soil preparation considerably reduced the risk of night frost. In the soil at the depth of 5 cm, soil preparation increased daytime temperatures and reduced night temperatures compared with unprepared area. The maximum increase in monthly mean temperatures was almost 5 °C, and the daily variation in the surface parts of the tilts and humps increased so that excessively high temperatures for the optimal growth of the root system were measured from time to time. The temperature also rose at the depths of 50 and 100 cm. Soil preparation also increased the cumulative temperature sum. The highest sums accumulated during the summer months were recorded at the depth of 5 cm in the humps of cross-directional ploughed area (1127 dd.) and in the tilts of the ploughed area (1106 dd.), while the corresponding figure in the unprepared soil was 718 dd. At the height of 10 cm the highest temperature sum was 1020 dd. in the hump, the corresponding figure in the unprepared area being 925 dd. The incidence of high temperature amplitudes and percentage of high temperatures at the depth of 5 cm decreased most rapidly in the humps of cross-directional ploughed area and in the ploughing tilts towards the end of the measurement period. The decrease was attributed principally to the compressing of tilts, the ground vegetation succession and the growth of seedlings. The mean summer temperature in the unprepared area was lower than in the prepared area and the difference did not diminish during the period studied. The increase in temperature brought about by soil preparation thus lasts at least more than 10 years.