965 resultados para Heterocyclic analog
Resumo:
Two series of 1-alkylpyridinium and N-alkyl-N-methylpiperidinium ionic liquids fiinctionalized with a nitrile group at the end of the alkyl chain have been synthesized. Structural modifications include a change of the alkyl spacer length between the nitrile group and the heterocycle of the cationic core, as well as adding methyl or ethyl substituents on different positions of the pyridinium ring. The anions are the bromide and the bis(trifluoromethylsulfonyl)imide ion. All the bis(trifluoromethylsulfonyl)imide salts as well as the bromide salts with a long alkyl spacer were obtained as viscous liquids at room temperature, but some turned out to be supercooled liquids. In addition, pyrrolidinium and piperidinium ionic liquids with two nitrile functions attached to the heterocyclic core have been prepared. The crystal structures of seven pyridinium bis(trifluoromethylsulfonyl)imide salts are reported. Quantum chemical calculations have been performed on model cations and ion pairs with the bis(trifluoromethylsulfonyl)imide anion. A continuum model has been used to take solvation effects into account. These calculations show that the natural partial charge on the nitrogen atom of the nitrile group becomes more negative when the length of the alkyl spacer between the nitrile functional group and the heterocyclic core of the cation is increased. Methyl or methoxy substituents on the pyridinium ring slightly increase the negative charge on the nitrile nitrogen atom due to their electron-donating abilities. The position of the substituent (ortho, meta, or para) has only a very minor effect on the charge of the nitrogen atom. The N-15 NMR spectra of the bis(trifluoromethylsulfonyl)imide ionic liquids were recorded with the nitrogen-15 nucleus at its natural abundance. The chemical shift of the N-15 nucleus of the nitrile nitrogen atom could be correlated with the calculated negative partial charge on the nitrogen atom.
Resumo:
1,3-propanediol was subjected to a range of amination conditions. The N-heterocyclic carbene piano stool complex [Cp*IrCl2(bmim)] was found to be a good catalyst for amination and dehydration in toluene or ionic liquid; product compositions could be tuned by altering the ratio of diol to amine.
Resumo:
Scission of a supramolecular polymer-metal complex can be carried out using collapsing cavitation bubbles created by ultrasound. Although the most plausible scission mechanism of the coordinative bonds is through mechanical force, the influence of radicals and high hot-spot temperatures on scission has to be considered. A silver(I)-N-heterocyclic carbene complex was exposed to 20 kHz ultrasound in argon, nitrogen, methane, and isobutane saturated toluene. Scission percentages were almost equal under argon, nitrogen, and methane. Radical production differs by a factor of 10 under these gases, indicating that radical production is not a significant contributor to the scission process. A model to describe the displacement of the bubble wall, strain rates, and temperature in the gas shows that critical strain rates for coil-to-stretch transition, needed for scission, are achieved at reactor temperatures of 298 K, an acoustic pressure of 1.2 x 10(5) Pa, and an acoustic frequency of 20 kHz. Lower scission percentages were measured under isobutane, which also shows lower strain rates in model simulations. The activation of the polymer-metal complexes in toluene under the influence of ultrasound occurs through mechanical force.
Resumo:
In this study, an amphibian (Odorrana hejiangensis) skin extract was fractionated by reverse phase HPLC and fractions were screened for trypsin inhibitory activity. Using this initial approach, a novel trypsin inhibitory peptide was detected with an apparent protonated molecular mass of 1804.83Da, as determined by MALDI-TOF mass spectrometry. It was named Hejiang trypsin inhibitor (HJTI) in accordance. The primary structure of the biosynthetic precursor of HJTI was deduced from a cDNA sequence cloned from a skin-derived cDNA library. The primary structure of the encoded predicted mature active peptide was established as: GAPKGCWTKSYPPQPCS (non-protonated monoisotopic molecular mass - 1802.81Da). On the basis of this unequivocal amino acid sequence, a synthetic replicate was synthesized by solid phase Fmoc chemistry. This replicate displayed a moderately potent trypsin inhibition with a K(i) of 388nM. Bioinformatic analysis of the primary structure of this peptide indicated that it was a member of the Bowman-Birk family of protease inhibitors. The substitutions of Gln-14 and Ser-17 by Lys, resulted in an increase in cationicity and a small increase in potency to a K(i) value of 218nM. Neither HJTI nor its synthetic analog, possessed any significant antimicrobial activity.
Resumo:
A detailed study of the action of alkali on methylene blue (Cl. Basic Blue 9) and other thiazine dyes was carried out through a combination of UV/visible spectroscopy, thin layer chromatography, mass and NMR spectrometry and computational methods. In 0.1 M aq alkali solution, methylene blue forms a highly coloured, lipophilic species that is mainly Bernthsen's methylene violet i.e. a hydrolysis decomposition product, this being contrary to the report of a red N-hydroxy methylene blue adduct. The nature of the heterocyclic nitrogen atom in C.I. Basic Blue 9 is discussed and it is concluded there is no basis for the proposal of nucleophile addition at this site of the dye. In contrast, other thiazine dyes are deprotonated by alkali to form their neutral, highly coloured, lipophilic conjugate base forms. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Modulators of metabotropic glutamate receptor subtype 5 (mGluR5) may provide novel treatments for multiple central nervous system (CNS) disorders, including anxiety and schizophrenia. Although compounds have been developed to better understand the physiological roles of mGluR5 and potential usefulness for the treatment of these disorders, there are limitations in the tools available, including poor selectivity, low potency, and limited solubility. To address these issues, we developed an innovative assay that allows simultaneous screening for mGluR5 agonists, antagonists, and potentiators. We identified multiple scaffolds that possess diverse modes of activity at mGluR5, including both positive and negative allosteric modulators (PAMs and NAMs, respectively). 3-Fluoro-5-(3-(pyridine-2-yl)-1,2,4-oxadiazol-5-yl) benzonitrile (VU0285683) was developed as a novel selective mGluR5 NAM with high affinity for the 2-methyl-6-(phenyl-ethynyl)-pyridine (MPEP) binding site. VU0285683 had anxiolytic-like activity in two rodent models for anxiety but did not potentiate phen-cyclidine-induced hyperlocomotor activity. (4-Hydroxypiperidin-1-yl)(4-phenylethynyl) phenyl) methanone (VU0092273) was identified as a novel mGluR5 PAM that also binds to the MPEP site. VU0092273 was chemically optimized to an orally active analog, N-cyclobutyl-6-((3-fluorophenyl) ethynyl) nicotinamide hydrochloride (VU0360172), which is selective for mGluR5. This novel mGluR5 PAM produced a dose-dependent reversal of amphetamine-induced hyperlocomotion, a rodent model predictive of antipsychotic activity. Discovery of structurally and functionally diverse allosteric modulators of mGluR5 that demonstrate in vivo efficacy in rodent models of anxiety and antipsychotic activity provide further support for the tremendous diversity of chemical scaffolds and modes of efficacy of mGluR5 ligands. In addition, these studies provide strong support for the hypothesis that multiple structurally distinct mGluR5 modulators have robust activity in animal models that predict efficacy in the treatment of CNS disorders.
Resumo:
Polyisoprenyl-phosphate N-acetylaminosugar-1-phosphate transferases (PNPTs) constitute a family of eukaryotic and prokaryotic membrane proteins that catalyze the transfer of a sugar-1-phosphate to a phosphoisoprenyl lipid carrier. All PNPT members share a highly conserved 213-Valine-Phenylalanine-Methionine-Glycine-Aspartic acid-217 (VFMGD) motif. Previous studies using the MraY protein suggested that the aspartic acid residue in this motif, D267, is a nucleophile for a proposed double-displacement mechanism involving the cleavage of the phosphoanhydride bond of the nucleoside. Here, we demonstrate that the corresponding residue in the E. coli WecA, D217, is not directly involved in catalysis, as its replacement by asparagine results in a more active enzyme. Kinetic data indicate that the D217N replacement leads to more than twofold increase in V(max) without significant change in the K(m) for the nucleoside sugar substrate. Furthermore, no differences in the binding of the reaction intermediate analog tunicamycin were found in D217N as well as in other replacement mutants at the same position. We also found that alanine substitutions in various residues of the VFMGD motif affect to various degrees the enzymatic activity of WecA in vivo and in vitro. Together, our data suggest that the highly conserved VFMGD motif defines a common region in PNPT proteins that contributes to the active site and is likely involved in the release of the reaction product.
Resumo:
Using a primer to a conserved nucleotide sequence of previously-cloned skin peptides of Phyllomedusa species, two distinct cDNAs were “shotgun” cloned from a skin secretion-derived cDNA library of the frog, Phyllomedusa burmeisteri. The two ORFs separately encode chains A and B of an analog of the previously-reported heterodimeric peptide, distinctin. LC-MS/MS analysis of native versus dithiotreitol reduced crude venom, confirmed the predicted primary sequences as well as the cystine link between the two monomers. Distinctin predominantly exists in the venom as a heterodimer (A-B), neither of the constituent peptides were detected as monomer, whereas of the two possible homodimers (A-A or B-B), only B-B was detected in comparatively low quantity. In vitro dimerization of synthetic replicates of the monomers demonstrated that besides heterodimer, both homodimers are also formed in considerable amounts. Distinctin is the first example of an amphibian skin dimeric peptide that is formed by covalent linkage of two chains that are the products of different mRNAs. How this phenomenon occurs in vivo, to exclude significant homodimer formation, is unclear at present but a “favored steric state” type of interaction between chains is most likely.
Resumo:
Four different bombesins (bombesin, His(6)-bombesin, Phe(13)-bombesin and Asp(2)-, Phe(4)-SAP-bombesin) have been identified by a systematic sequencing study of peptides in reverse phase HPLC fractions of the skin secretion of the European yellow-bellied toad, Bombina variegata, that had been solvated in 0.1% (v/v) aqueous trifluoroacetic acid (TFA) and stored frozen at -20°C for 12 years. By using a 3'- and 5'-RACE PCR strategy, the corresponding biosynthetic precursor-encoding cDNAs of all four peptides were cloned from a cDNA library made from the same long-term frozen, acid-solvated skin secretion sample following thawing and lyophilization. Canonical bombesin and His(6)-bombesin are classical bombesin sub-family members, whereas Phe(13)-bombesin and Asp(2)-, Phe(4)-SAP-bombesin, belong to the litorin/ranatensin sub-family of bombesin-like peptides (BLPs). Assignment of these peptides to respective sub-families, was based upon both their primary structural similarities and their comparative pharmacological activities. An interesting observation in this study, was that the nucleotide sequences of the open-reading frames of cloned cDNAs encoding bombesin and its His(6)-substituted analog, were identical except for a single base that was responsible for the change observed at the position 6 residue in the mature peptide from Asn to His. In contrast, the precursor cDNA nucleotide sequences encoding the Phe(13)-bombesins, exhibited 53 base differences. The pharmacological activities of synthetic replicates of each bombesin were compared using two different mammalian smooth muscle preparations and all four peptides were found to be active. However, there were significant differences in their relative potencies.
Resumo:
Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated.
Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined.
Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains.
These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.
Resumo:
Enzymatic cis-dihydroxylation of benzo[b]thiophene, benzo[b]furan and several methyl substituted derivatives was found to occur in both the carbocyclic and heterocyclic rings. Relative and absolute configurations and enantiopurities of the resulting dihydrodiols were determined. Hydrogenation of the alkene bond in carbocyclic cis-dihydrodiols and ring-opening epimerization/reduction reactions of heterocyclic cis/trans-dihydrodiols were also studied. The relatively stable heterocyclic dihydrodiols of benzo[b]thiophene and benzo[b]furan showed a strong preference for the trans configuration in aqueous solutions. The 2,3-dihydrodiol metabolite of benzo[b]thiophene was utilized as a precursor in the chemoenzymatic synthesis of the unstable arene oxide, benzo[b]thiophene 2,3-oxide.
Resumo:
Children's judgements about pain at age 8-10 years were examined comparing two groups of children who had experienced different exposure to nociceptive procedures in the neonatal period: extremely low birthweight (ELBW) <or = 1000 g (N = 47) and full birthweight (FBW) > or = 2500 g (N = 37). The 24 pictures that comprise the Pediatric Pain Inventory, depicting events in four settings: medical, recreational, daily living, and psychosocial, were used as the pain stimuli. The subjects rated pain intensity using the Color Analog Scale and pain affect using the Facial Affective Scale. Child IQ and maternal education were statistically adjusted in group comparisons. Pain intensity and pain affect related to activities of daily living and recreation were significantly higher than psychosocial and medically related pain on both scales in both groups of children. Although the two groups of children did not differ overall in their perceptions of pain intensity or affect, the ELBW children rated medical pain intensity significantly higher than psychosocial pain, unlike the FBW group. Also, duration of neonatal intensive care unit stay for the ELBW children was related to increased pain affect ratings in recreational and daily living settings. Despite altered response to pain in the early years reported by parents, on the whole at 8-10 years of age ELBW children judged pain in pictures similarly to their term peers. However, differences were evident, which suggests that studies are needed of biobehavioural reactivity to pain beyond infancy, as well as research into beliefs, attitudes, and perceptions about pain during the course of childhood in formerly ELBW children.