937 resultados para Herbicidal analysis, Chemometrics, Differential pulse stripping voltammetry
Resumo:
The cotton strip assay (CSA) is an established technique for measuring soil microbial activity. The technique involves burying cotton strips and measuring their tensile strength after a certain time. This gives a measure of the rotting rate, R, of the cotton strips. R is then a measure of soil microbial activity. This paper examines properties of the technique and indicates how the assay can be optimised. Humidity conditioning of the cotton strips before measuring their tensile strength reduced the within and between day variance and enabled the distribution of the tensile strength measurements to approximate normality. The test data came from a three-way factorial experiment (two soils, two temperatures, three moisture levels). The cotton strips were buried in the soil for intervals of time ranging up to 6 weeks. This enabled the rate of loss of cotton tensile strength with time to be studied under a range of conditions. An inverse cubic model accounted for greater than 90% of the total variation within each treatment combination. This offers support for summarising the decomposition process by a single parameter R. The approximate variance of the decomposition rate was estimated from a function incorporating the variance of tensile strength and the differential of the function for the rate of decomposition, R, with respect to tensile strength. This variance function has a minimum when the measured strength is approximately 2/3 that of the original strength. The estimates of R are almost unbiased and relatively robust against the cotton strips being left in the soil for more or less than the optimal time. We conclude that the rotting rate X should be measured using the inverse cubic equation, and that the cotton strips should be left in the soil until their strength has been reduced to about 2/3.
Resumo:
Skeletal muscle is an attractive target tissue for delivery of therapeutic genes, since it is well vascularized, easily accessible, and has a high capacity for protein synthesis. For efficient transfection in skeletal muscle, several protocols have been described, including delivery of low voltage electric pulses and a combination of high and low voltage electric pulses. The aim of this study was to determine the influence of different parameters of electrotransfection on short-term and long-term transfection efficiency in murine skeletal muscle, and to evaluate histological changes in the treated tissue. Different parameters of electric pulses, different time lags between plasmid DNA injection and application of electric pulses, and different doses of plasmid DNA were tested for electrotransfection of tibialis cranialis muscle of C57BI/6 mice using DNA plasmid encoding green fluorescent protein (GFP). Transfection efficiency was assessed on frozen tissue sections one week after electrotransfection using a fluorescence microscope and also noninvasively, followed by an in vivo imaging system using a fluorescence stereo microscope over a period of several months. Histological changes in muscle were evaluated immediately or several months after electrotransfection by determining infiltration of inflammatory mononuclear cells and presence of necrotic muscle fibers. The most efficient electrotransfection into skeletal muscle of C57BI/6 mice in our experiments was achieved when one high voltage (HV) and four low voltage (LV) electric pulses were applied 5 seconds after the injection of 30 μg of plasmid DNA. This protocol resulted in the highest short-term as well as long-term transfection. The fluorescence intensity of the transfected area declined after 2-3 weeks, but GFP fluorescence was still detectable 18 months after electrotransfection. Extensive inflammatory mononuclear cell infiltration was observed immediately after the electrotransfection procedure using the described parameters, but no necrosis or late tissue damage was observed. This study showed that electric pulse parameters, time lag between the injection of DNA and application of electric pulses, and dose of plasmid DNA affected the duration of transgene expression in murine skeletal muscle. Therefore, transgene expression in muscle can be controlled by appropriate selection of electrotransfection protocol.
Resumo:
Cold atmospheric-pressure plasma plumes are generated in the ambient air by a single-electrode plasma jet device powered by pulsed dc and ac sine-wave excitation sources. Comprehensive comparisons of the plasma characteristics, including electrical properties, optical emission spectra, gas temperatures, plasma dynamics, and bacterial inactivation ability of the two plasmas are carried out. It is shown that the dc pulse excited plasma features a much larger discharge current and stronger optical emission than the sine-wave excited plasma. The gas temperature in the former discharge remains very close to the room temperature across the entire plume length; the sine-wave driven discharge also shows a uniform temperature profile, which is 20-30 degrees higher than the room temperature. The dc pulse excited plasma also shows a better performance in the inactivation of gram-positive staphylococcus aureus bacteria. These results suggest that the pulsed dc electric field is more effective for the generation of nonequilibrium atmospheric pressure plasma plumes for advanced plasma health care applications.
Resumo:
Background: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I:IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.
Resumo:
Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2’–deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.
Resumo:
FimB and FimE are site-specific recombinases, part of the λ integrase family, and invert a 314 bp DNA switch that controls the expression of type 1 fimbriae in Escherichia coli. FimB and FimE differ in their activity towards the fim switch, with FimB catalysing inversion in both directions in comparison to the higher-frequency but unidirectional on-to-off recombination catalysed by FimE. Previous work has demonstrated that FimB, but not FimE, recombination is completely inhibited in vitro and in vivo by a regulator, PapB, expressed from a distinct fimbrial locus. The aim of this work was to investigate differences between FimB and FimE activity by exploiting the differential inhibition demonstrated by PapB. The research focused on genetic changes to the fim switch that alter recombinase binding and its structural context. FimB and FimE still recombined a switch in which the majority of fimS DNA was replaced with a larger region of non-fim DNA. This demonstrated a minimal requirement for FimB and FimE recombination of the Fim binding sites and associated inverted repeats. With the original leucine-responsive regulatory protein (Lrp) and integration host factor (IHF)-dependent structure removed, PapB was now able to inhibit both recombinases. The relative affinities of FimB and FimE were determined for the four ‘half sites’. This analysis, along with the effect of extensive swaps and duplications of the half sites on recombination frequency, demonstrated that FimB recruitment and therefore subsequent activity was dependent on a single half site and its context, whereas FimE recombination was less stringent, being able to interact initially with two half sites with equally high affinity. While increasing FimB recombination frequencies failed to overcome PapB repression, mutations made in recombinase binding sites resulted in inhibition of FimE recombination by PapB. Overall, the data support a model in which the recombinases differ in loading order and co-operative interactions. PapB exploits this difference and FimE becomes susceptible when its normal loading is restricted or changed.
Resumo:
The transformation of ethylene oxide (EO), propylene oxide (PO) and 1- butylene oxide (1-BuO) by human glutathione transferase theta (hGSTT1-1) was studied comparatively using 'conjugator' (GSTT1 + individuals) erythrocyte lysates. The relative sequence of velocity of enzymic transformation was PO > EO >> 1-BuO. The faster transformation of PO compared to EO was corroborated in studies with human and rat GSTT1-1 (hGSTT1-1 and rGSTT1-1, respectively) expressed by Salmonella typhimurium TA1535. This sequence of reactivities of homologous epoxides towards GSTT1-1 contrasts to the sequence observed in homologous alkyl halides (methyl bromide, MBr; ethyl bromide, EtBr; n-propyl bromide, PrBr) where the relative sequence MeBr >> EtBr > PrBr is observed. The higher reactivity towards GSTT1-1 of propylene oxide compared to ethylene oxide is consistent with a higher chemical reactivity. This is corroborated by experimental data of acid-catalysed hydrolysis of a number of aliphatic epoxides, including ethylene oxide and propylene oxide and consistent with semi-empirical molecular orbital modelings.
Resumo:
The global financial crisis (GFC) has severely impacted the financial position and performance of many companies internationally. Because of its severity and associated increase in uncertainty it challenges the effectiveness of existing disclosure regulation. Australia provides a unique environment in which to test the effects of the GFC on corporate disclosure because statutory rules mandate the timely disclosure of ‘price-sensitive’ information (ASX Rule 3.1) by listed entities. Exploiting this institutional setting we investigate the determinants and timeliness of profit warnings issued by the top 500 ASX-listed firms with profit declines in the 2009 fiscal year. Our findings show that firms behave differently with regard to the issuance of profit warnings: larger and more indebted firms are more likely to issue a profit warning and tend to be timelier; surprisingly, poorer performing firms tend to release the news more quickly and this might be attributed to an increasing threat of litigation. Our analysis of profit warning determinants shows interesting results with the presence of asset impairments hindering the early disclosure of profit warnings. Our findings are novel for two main reasons: first, we provide insights into the impact of global financial crisis on profit warning behaviour; second, we are the first to examine the differential impact of alternative features of profit warnings on disclosure timeliness. The findings have implications for regulators in determining compliance with continuous disclosure rules and more broadly, for market participants in interpreting profit warnings.
Resumo:
Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-L-lysine, poly-L-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-L-lysine and poly-L-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement.
Resumo:
Glycerophospholipids (GPs) that differ in the relative position of the two fatty acyl chains on the glycerol backbone (i.e., sn-positional isomers) can have distinct physicochemical properties. The unambiguous assignment of acyl chain position to an individual GP represents a significant analytical challenge. Here we describe a workflow where phosphatidylcholines (PCs) are subjected to ESI for characterization by a combination of differential mobility spectrometry and MS (DMS-MS). When infused as a mixture, ions formed from silver adduction of each phospholipid isomer {e.g., [PC (16:0/18:1) + Ag]+ and [PC (18:1/16:0) + Ag]+} are transmitted through the DMS device at discrete compensation voltages. Varying their relative amounts allows facile and unambiguous assignment of the sn-positions of the fatty acyl chains for each isomer. Integration of the well-resolved ion populations provides a rapid method (< 3 min) for relative quantification of these lipid isomers. The DMS-MS results show excellent agreement with established, but time-consuming, enzymatic approaches and also provide superior accuracy to methods that rely on MS alone. The advantages of this DMS-MS method in identification and quantification of GP isomer populations is demonstrated by direct analysis of complex biological extracts without any prior fractionation.
Resumo:
Numerical investigation of free convection heat transfer in an attic shaped enclosure with differentially heated two inclined walls and filled with air is performed in this study. The left inclined surface is uniformly heated whereas the right inclined surface is uniformly cooled. There is a heat source placed on the right side of the bottom surface. Rest of the bottom surface is kept as adiabatic. Finite volume based commercial software ANSYS 15 (Fluent) is used to solve the governing equations. Dependency of various flow parameters of fluid flow and heat transfer is analyzed including Rayleigh number, Ra ranging from 103 to 106, heater size from 0.2 to 0.6, heater position from 0.3 to 0.7 and aspect ratio from 0.2 to 1.0 with a fixed Prandtl number of 0.72. Outcomes have been reported in terms of temperature and stream function contours and local Nusselt number for various Ra, heater size, heater position, and aspect ratio. Grid sensitivity analysis is performed and numerically obtained results have been compared with those results available in the literature and found good agreement.
Resumo:
A new mesh adaptivity algorithm that combines a posteriori error estimation with bubble-type local mesh generation (BLMG) strategy for elliptic differential equations is proposed. The size function used in the BLMG is defined on each vertex during the adaptive process based on the obtained error estimator. In order to avoid the excessive coarsening and refining in each iterative step, two factor thresholds are introduced in the size function. The advantages of the BLMG-based adaptive finite element method, compared with other known methods, are given as follows: the refining and coarsening are obtained fluently in the same framework; the local a posteriori error estimation is easy to implement through the adjacency list of the BLMG method; at all levels of refinement, the updated triangles remain very well shaped, even if the mesh size at any particular refinement level varies by several orders of magnitude. Several numerical examples with singularities for the elliptic problems, where the explicit error estimators are used, verify the efficiency of the algorithm. The analysis for the parameters introduced in the size function shows that the algorithm has good flexibility.