874 resultados para Health facility environment
Resumo:
We show that the cluster ion concentration (CIC) in the atmosphere is significantly suppressed during events that involve rapid increases in particle number concentration (PNC). Using a neutral cluster and air ion spectrometer, we investigated changes in CIC during three types of particle enhancement processes – new particle formation, a bushfire episode and an intense pyrotechnic display. In all three cases, the total CIC decreased with increasing PNC, with the rate of decrease being greater for negative CIC than positive. We attribute this to the greater mobility, and hence the higher attachment coefficient, of negative ions over positive ions in the air. During the pyrotechnic display, the rapid increase in PNC was sufficient to reduce the CIC of both polarities to zero. At the height of the display, the negative CIC stayed at zero for a full 10 min. Although the PNCs were not significantly different, the CIC during new particle formation did not decrease as much as during the bushfire episode and the pyrotechnic display. We suggest that the rate of increase of PNC, together with particle size, also play important roles in suppressing CIC in the atmosphere.
Resumo:
Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits,as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring.
Resumo:
The role of different chemical compounds, particularly organics, involved in the new particle formation (NPF) and its consequent growth are not fully understood. Therefore, this study was conducted to investigate the chemistry of aerosol particles during NPF events in an urban subtropical environment. Aerosol chemical composition was measured along with particle number size distribution (PNSD) and several other air quality parameters at five sites across an urban subtropical environment. An Aerodyne compact Time-of-Flight Aerosol Mass Spectrometer (c-TOF-AMS) and a TSI Scanning Mobility Particle Sizer (SMPS) measured aerosol chemical composition and PNSD, respectively. Five NPF events, with growth rates in the range 3.3-4.6 nm, were detected at two sites. The NPF events happened on relatively warmer days with lower humidity and higher solar radiation. Temporal percent fractions of nitrate, sulphate, ammonium and organics were modelled using the Generalised Additive Model (GAM), with a basis of penalised spline. Percent fractions of organics increased after the NPF events, while the mass fraction of ammonium and sulphate decreased. This uncovered the important role of organics in the growth of newly formed particles. Three organic markers, factors f43, f44 and f57, were calculated and the f44 vs f43 trends were compared between nucleation and non-nucleation days. f44 vs f43 followed a different pattern on nucleation days compared to non-nucleation days, whereby f43 decreased for vehicle emission generated particles, while both f44 and f43 decreased for NPF generated particles. It was found for the first time that vehicle generated and newly formed particles cluster in different locations on f44 vs f43 plot and this finding can be used as a tool for source apportionment of measured particles.
Resumo:
Background Historically, the paper hand-held record (PHR) has been used for sharing information between hospital clinicians, general practitioners and pregnant women in a maternity shared-care environment. Recently in alignment with a National e-health agenda, an electronic health record (EHR) was introduced at an Australian tertiary maternity service to replace the PHR for collection and transfer of data. The aim of this study was to examine and compare the completeness of clinical data collected in a PHR and an EHR. Methods We undertook a comparative cohort design study to determine differences in completeness between data collected from maternity records in two phases. Phase 1 data were collected from the PHR and Phase 2 data from the EHR. Records were compared for completeness of best practice variables collected The primary outcome was the presence of best practice variables and the secondary outcomes were the differences in individual variables between the records. Results Ninety-four percent of paper medical charts were available in Phase 1 and 100% of records from an obstetric database in Phase 2. No PHR or EHR had a complete dataset of best practice variables. The variables with significant improvement in completeness of data documented in the EHR, compared with the PHR, were urine culture, glucose tolerance test, nuchal screening, morphology scans, folic acid advice, tobacco smoking, illicit drug assessment and domestic violence assessment (p = 0.001). Additionally the documentation of immunisations (pertussis, hepatitis B, varicella, fluvax) were markedly improved in the EHR (p = 0.001). The variables of blood pressure, proteinuria, blood group, antibody, rubella and syphilis status, showed no significant differences in completeness of recording. Conclusion This is the first paper to report on the comparison of clinical data collected on a PHR and EHR in a maternity shared-care setting. The use of an EHR demonstrated significant improvements to the collection of best practice variables. Additionally, the data in an EHR were more available to relevant clinical staff with the appropriate log-in and more easily retrieved than from the PHR. This study contributes to an under-researched area of determining data quality collected in patient records.
Resumo:
In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental–numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.
Resumo:
Many researchers in the field of civil structural health monitoring (SHM) have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Fieldwork has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. Informed by a brief review of the literature, this paper documents the design and proposed test plan of a structurally complex laboratory bridge model that has been specifically designed for the purpose of SHM research. Preliminary results have been presented in the companion paper.
Resumo:
Many researchers in the field of civil structural health monitoring have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Field work has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. This paper presents some preliminary results of experimental modal testing and analysis of the bridge model presented in the companion paper, using the peak picking method, and compares these results with those of a simple numerical model of the structure. Three dominant modes of vibration were experimentally identified under 15 Hz. The mode shapes and order of the modes matched those of the numerical model; however, the frequencies did not match.
Resumo:
Between the national and household factors, community or “meso-level” changes in political economy and livelihoods in southwestern Bangladesh illustrate that in order to understand the impacts on people and nations of climate change-related environmental changes – changes that are expected to include rising sea level, saline inundation, and increased likelihood and intensity of cyclones in Bangladesh – we need to understand the dynamics of the built and natural environment and the political economies these sustain. Meso-level political economies affect the sources of income and livelihood available in distressed environmental conditions, and therefore influence how well the people in them can adapt to changing environmental conditions. In this study we have seen the underlying political economies whose dynamics, and not slow onset environmental changes or disastrous environmental events, are pushing Bangladeshis to incorporate migration strategies into their livelihood strategies.
Resumo:
The workshop is an activity of the IMIA Working Group ‘Security in Health Information Systems’ (SiHIS). It is focused to the growing global problem: how to protect personal health data in today’s global eHealth and digital health environment. It will review available trust building mechanisms, security measures and privacy policies. Technology alone does not solve this complex problem and current protection policies and legislation are considered woefully inadequate. Among other trust building tools, certification and accreditation mechanisms are dis-cussed in detail and the workshop will determine their acceptance and quality. The need for further research and international collective action are discussed. This workshop provides an opportunity to address a critical growing problem and make pragmatic proposals for sustainable and effective solutions for global eHealth and digital health.
Resumo:
Introduction: Exposure to bioaerosols in indoor environments has been linked to various adverse health effects, such as airway disorders and upper respiratory tract symptoms. The aim of this study was to assess exposure to bioaerosols in the school environment in Brisbane, Australia. Methods: Culturable fungi and endotoxin measurements were conducted in six schools between October 2010 and May 2011. Culturable fungi (2 indoor air and 1-2 outdoor air samples per school) were assessed using a Biotest RCS High Flow Air Sampler, with a flow rate of either 50L/min or 20L/min. A rose pengar agar was used for recovery, which was incubated prior to counting and partial identification. Endotoxins were sampled (8h, 2L/min) using SKC glass fibre filters (4 indoor air samples per school) and analysed using an endpoint chromogenic LAL assay. Results: The arithmetic mean for fungi concentration in indoor and outdoor air was 710 cfu/m3(125- 1900 cfu/m3) and 524 cfu/m3 (140-1250 cfu/m3), respectively. The most frequently isolated fungal genus from the outdoor air was Cladosporium (over 40 %), followed by isolated Penicillium (21%) and Aspergillus (12%). The percent of Penicillium, Cladosporium and Aspergillus in indoor air samples was 32%, 32% and 8%, respectively. The aritmetic mean of endotoxin concentration was 0.59 EU/m3 (0-2,2 EU/m3). Discussion: The results of the current study are in agreement with previously reported studies, in that airborne fungi and endotoxin concentrations varied extensively, and were mostly dependent on climatic conditions. In addition, the indoor air mycoflora largely reflected the fungal flora present in the outdoor air, with Cladosporium being the most common in both outdoor and indoor (with Penicillium) air. In indoor air, unusually high endotoxin levels, over 1 EU/m3, were detected at 2 schools. Although these schools were not affected by the recent Brisbane floods, persistent rain prior to and during the study perios could explain the results.
Resumo:
Asoftware-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students’ understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 %of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of ‘‘invisible’’ physical principles and increased opportunity for experimentation and collaborative problembased learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.
Resumo:
A measurement campaign was conducted from 3 to 19 December 2012 at an urban site of Brisbane, Australia. Size distribution of ions and particle number concentrations were measured to investigate the influence of particle formation and biomass burning on atmospheric ion and particle concentrations. Overall ion and particle number concentrations during the measurement period were found to be (-1.2 x 103 cm-3 | +1.6 x 103 cm-3) and 4.4 x 103, respectively. The results of correlation analysis between concentrations of ions and nitrogen oxides indicated that positive and negative ions originated from similar sources, and that vehicle exhaust emissions had a more significant influence on intermediate/large ions, while cluster ions rapidly attached to larger particles once emitted into the atmosphere. Diurnal variations in ion concentration suggested the enrichment of intermediate and large ions on new particle formation event days, indicating that they were involved in the particle formation processes. Elevated total ions, particularly larger ions, and particle number concentrations were found during biomass burning episodes. This could be due to the attachment of cluster ions onto accumulation mode particles or production of charged particles from biomass burning, which were in turn transported to the measurement site. The results of this work enhance scientific understanding of the sources of atmospheric ions in an urban environment, as well as their interactions with particles during particle formation processes.
Resumo:
A quantitative understanding of outdoor air quality in school environments is crucial given that air pollution levels inside classrooms are significantly influenced by outdoor pollution sources. To date, only a handful of studies have been conducted on this important topic in developing countries. The aim of this study was to quantify pollutant levels in the outdoor environment of a school in Bhutan and assess the factors driving them. Measurements were conducted for 16 weeks, spanning the wet and dry seasons, in a rural school in Bhutan. PM10, PM2.5, particle number (PN) and CO were measured daily using real-time instruments, while weekly samples for volatile organic compounds (VOCs), carbonyls and NO2 were collected using a passive sampling method. Overall mean PM10 and PM2.5 concentrations (µg/m3) were 27 and 13 for the wet, and 36 and 29 for the dry season, respectively. Only wet season data were available for PN concentrations, with a mean of 2.56 × 103 particles/cm3. Mean CO concentrations were below the detection limit of the instrumentation for the entire measurement period. Only low levels of eight VOCs were detected in both the wet and dry seasons, which presented different seasonal patterns in terms of the concentration of different compounds. The notable carbonyls were formaldehyde and hexaldehyde, with mean concentrations (µg/m3) of 2.37 and 2.41 for the wet, and 6.22 and 0.34 for the dry season, respectively. Mean NO2 cocentration for the dry season was 1.7 µg/m3, while it was below the detection limit of the instrumentation for the wet season. The pollutant concentrations were associated with a number of factors, such as cleaning and combustion activities in and around the school. A comparison with other school studies showed comparable results with a few of the studies, but in general, we found lower pollutant concentrations in the present study.
Resumo:
Innovative research conducted by Dr Jan Golembiewski from Medical Architectures Australasia-Pacific, in the area of environmental design for mental healthcare helps us reflect, through experiential storytelling, on the importance of paying attention to positive environmental ‘triggers for action’ when designing physical spaces to help manage particular patients’ conditions. This article is written about the mental health experience specifically, however environmental design is an issue we can all relate to in our everyday lives (at home, at work, social spots or in places such as hospitals or retreats) when we instinctively notice a connection between our mental health and our surroundings or a healthy sense of place.