937 resultados para Hazardous waste disposal in the ground
Resumo:
A recent field campaign in southwest England used numerical modeling integrated with aircraft and radar observations to investigate the dynamic and microphysical interactions that can result in heavy convective precipitation. The COnvective Precipitation Experiment (COPE) was a joint UK-US field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly due to the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the US. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve NWP model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the UK BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360-deg volume scans over 10 elevation angles approximately every 5 minutes, and was augmented by two UK Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper: (i) provides an overview of the COPE field campaign and the resulting dataset; (ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone; and (iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.
Resumo:
Explosive cyclones are intense extra-tropical low pressure systems featuring large deepening rates. In the Euro-Atlantic sector, they are a major source of life-threatening weather impacts due to their associated strong wind gusts, heavy precipitation and storm surges. The wintertime variability of the North Atlantic cyclonic activity is primarily modulated by the North Atlantic Oscillation (NAO). In this study, we investigate the interannual and multi-decadal variability of explosive North Atlantic cyclones using track density data from two reanalysis datasets (NCEP and ERA-40) and a control simulation of an atmosphere/ocean coupled General Circulation Model (GCM—ECHAM5/MPIOM1). The leading interannual and multi-decadal modes of variability of explosive cyclone track density are characterized by a strengthening/weakening pattern between Newfoundland and Iceland, which is mainly modulated by the NAO at both timescales. However, the NAO control of interannual cyclone variability is not stationary in time and abruptly fluctuates during periods of 20–25 years long both in NCEP and ECHAM5/MPIOM1. These transitions are accompanied by structural changes in the leading mode of explosive cyclone variability, and by decreased/enhanced baroclinicity over the sub-polar/sub-tropical North Atlantic. The influence of the ocean is apparently important for both the occurrence and persistence of such anomalous periods. In the GCM, the Atlantic Meridional Overturning Circulation appears to influence the large-scale baroclinicity and explosive cyclone development over the North Atlantic. These results permit a better understanding of explosive cyclogenesis variability at different climatic timescales and might help to improve predictions of these hazardous events.
Resumo:
Background: The role of osteocytes in bone structure and function remains partially unresolved. Their participation in mechanotransduction, i.e., the conversion of a physical stimulus into a cellular response, has been hypothesized. The present study was an evaluation of the osteocyte density in the peri-implant bone of immediately loaded and submerged dental implants. Methods: Fourteen male patients were included in the study; all of them were partially edentulous and needed a posterior mandibular restoration. Implants were inserted in these areas; half of the sample was loaded immediately (included in a fixed provisional prosthesis on the same day as implant surgery), whereas the other half was left to heal submerged. Fourteen implants (seven immediately loaded and seven unloaded) were retrieved with a trephine after a healing period of 8 weeks. The specimens were treated to obtain thin ground sections, and histomorphometry was used to evaluate the osteocyte index in the peri-implant bone. Results: A higher and statistically significant number of osteocytes was found in the peri-implant bone around immediately loaded implants (P=0.0081). A correlation between the percentage of bone-implant contact and osteocyte density was found for immediately loaded implants (P=0.0480) but not for submerged implants (P=0.2667). Conclusion: The higher number of osteocytes in the peri-implant bone around immediately loaded implants could be related to the functional adaptation required by the loading stimulus, which also explains the hypothesized involvement of the osteocytes in the maintenance of the bone matrix. J Periodontol 2009;80:499-504.
Resumo:
Background: Physical and bioceramic incorporation surface treatments at the nanometer scale showed higher means of bone-to-implant contact (BIC) and torque values compared with surface topography at the micrometer scale; however, the literature concerning the effect of nanometer scale parameters is sparse. Purpose: The aim of this study was to evaluate the influence of two different implant surfaces on the percentage bone-to-implant contact (BIC%) and bone osteocyte density in the human posterior maxilla after 2 months of unloaded healing. Materials and Methods: The implants utilized presented dual acid-etched (DAE) surface and a bioceramic molecular impregnated treatment (Ossean(R), Intra-Lock International, Boca Raton, FL, USA) serving as control and test, respectively. Ten subjects (59 1 9 years of age) received two implants (one of each surface) during conventional implant surgery in the posterior maxilla. After the non-loaded period of 2 months, the implants and the surrounding tissue were removed by means of a trephine and were non-decalcified processed for ground sectioning and analysis of BIC%, bone density in threaded area (BA%), and osteocyte index (Oi). Results: Two DAE implants were found to be clinically unstable at time of retrieval. Histometric evaluation showed significantly higher BIC% and Oi for the test compared to the control surface (p < .05), and that BA% was not significantly different between groups. Wilcoxon matched pairs test was used to compare the differences of histomorphometric variables between implant surfaces. The significance test was conducted at a 5% level of significance. Conclusion: The histological data suggest that the bioceramic molecular impregnated surface-treated implants positively modulated bone healing at early implantation times compared to the DAE surface.
Resumo:
Agitation rate is an important parameter in the operation of Anaerobic Sequencing Biofilm Batch Reactors (ASBBRs), and a proper agitation rate guarantees good mixing, improves mass transfer, and enhances the solubility of the particulate organic matter. Dairy effluents have a high amount of particulate organic matter, and their anaerobic digestion presents inhibitory intermediates (e. g., long-chain fatty acids). The importance of studying agitation in such batch systems is clear. The present study aimed to evaluate how agitation frequency influences the anaerobic treatment of dairy effluents. The ASBBR was fed with wastewater from milk pasteurisation process and cheese manufacture with no whey segregation. The organic matter concentration, measured as chemical oxygen demand (COD), was maintained at approximately 8,000 mg/L. The reactor was operated with four agitation frequencies: 500 rpm, 350 rpm, 200 rpm, and no agitation. In terms of COD removal efficiency, similar results were observed for 500 rpm and 350 rpm (around 90%) and for 200 rpm and no agitation (around 80%). Increasing the system`s agitation thus not only improved the global efficiency of organic matter removal but also influenced volatile acid production and consumption and clearly modified this balance in each experimental condition.
Resumo:
The Gaia Space Mission [Mignard, F., 2005. The three-dimensional universe with Gaia. ESA/SP-576; Perryman, M., 2005. The three-dimensional universe with Gaia. ESA/SP-576] will observe several transient events as supernovae, microlensing, gamma ray bursts and new Solar System objects. The satellite, due to its scanning law, will detect these events but will not be able to monitor them. So, to take these events into consideration and to perform further studies it is necessary to follow them with Earth-based observations. These observations could be efficiently done by a ground-based network of well-equipped telescopes scattered in both hemispheres. Here we focus our attention at the new Solar System objects to be discovered and observed by the Gaia satellite [Mignard, F., 2002. Observations of Solar System objects by Gaia I. Detection of NEOS. Astron. Astrophys. 393, 727] mainly asteroids, NEOs and comets. A dedicated ground-based network of telescopes as proposed by Thuillot [2005. The three-dimensional universe with Gaia. ESA/SP-576] will allow to monitor those events, to avoid losing them and to perform a quick characterization of some physical properties which will be important for the identification of these objects in further measurements by Gaia. We present in this paper, the beginning of the organization of a Latin-American ground-based network of telescopes and observers joining several institutions in Argentina, Bolivia, Brazil and other Latin-American countries aiming to contribute to the follow-up of Gaia science alerts for Solar System objects. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The three poikilophydric and homoiochlorophyllous moss species Campylopus savannarum (C. Muell.) Mitt., Racocarpus fontinaloides (C. Muell.) Par. and Ptychomitrium vaginatum Besch. grow on sun-exposed rocks of a tropical inselberg in Brazil subject to regular drying and wetting cycles. Effective photo-oxidative protection in the light-adapted desiccated state in all three species is achieved by a reduction of ground chlorophyll fluorescence, F, to almost zero. Upon rewatering, the kinetics of the recovery of F in air dry cushions to higher values is very fast in the first 5min, but more than 80min are needed until an equilibrium is reached gradually. The kinetics were not different between the three species. The three moss species, have a distinct niche occupation and form a characteristic zonation around soil vegetation islands on the rock outcrops, where C. savannarum and R. fontinaloides form an inner and outer belt, respectively, around vegetation islands and P vaginatum occurs as small isolated cushions on bare rock. However, they were not distinguished by the reduction of F in the dry state and the rewetting recovery kinetics and only slightly different in their photosynthetic capacity. Stable isotope ratios (delta C-13, delta N-15) indicate that liquid films of water limiting diffusion of CO2 are important in determining carbon acquisition and suggest that limitation of CO2 fixation by water films must be more pronounced over time in P vaginatum than in the latter species. This is determined by both the micro site occupied and the form of the moss cushions. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
An important production programming problem arises in paper industries coupling multiple machine scheduling with cutting stocks. Concerning machine scheduling: how can the production of the quantity of large rolls of paper of different types be determined. These rolls are cut to meet demand of items. Scheduling that minimizes setups and production costs may produce rolls which may increase waste in the cutting process. On the other hand, the best number of rolls in the point of view of minimizing waste may lead to high setup costs. In this paper, coupled modeling and heuristic methods are proposed. Computational experiments are presented.
Resumo:
The two-fluid and Landau criteria for superfluidity are compared for trapped Bose gases. While the two-fluid criterion predicts translational superfluidity, it is suggested, on the basis of the homogeneous Gross-Pitaevski limit, that a necessary part of Landau`s criterion, adequate for non-translationally invariant systems, does not hold for trapped Bose gases in the GP limit. As a consequence, if the compressibility is detected to be very large (infinite by experimental standards), the two-fluid criterion is seen to be the relevant one in case the system is a translational superfluid, while the Landau criterion is the relevant one if translational superfluidity is absent.
Resumo:
Results of systematic tunable-frequency ESR studies of the spin dynamics in NiCl2-4SC(NH2)(2) (known as DTN), a gapped S = 1 chain system with easy-plane anisotropy dominating over the exchange coupling (large-D chain), are presented. We have obtained direct evidence for two-magnon bound states, predicted for S = 1 large-D spin chains in the fully spin-polarized (FSP) phase. The frequency-field dependence of the corresponding excitations was calculated using the set of parameters obtained earlier [S.A. Zvyagin, et al., Phys. Rev. Lett. 98 (2007) 047205]. Very good agreement between the calculations and the experiment was obtained. It is argued that the observation of transitions from the ground to two-magnon bound states might indicate a more complex picture of magnetic interactions in DTN, involving a finite in-plane anisotropy. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report on density functional theory studies of the electronic structure and magnetic properties of Mobius-[n]cyclacenes. The geometry of Mobius bands presents a modulation of bond lengths that is needed to accommodate the twist. This modulation takes the form of bond alternation defects analogous to those of solitons in polyacetylene. The ground state of all Mobius bands is a triplet, with a spin density distribution that follows the bond length modulation. A molecular dynamics simulation of the Mobius cyclacene at 300 K shows that the twist travels around the belt inducing a magnetic current. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The reconstruction of Extensive Air Showers (EAS) observed by particle detectors at the ground is based on the characteristics of observables like the lateral particle density and the arrival times. The lateral densities, inferred for different EAS components from detector data, are usually parameterised by applying various lateral distribution functions (LDFs). The LDFs are used in turn for evaluating quantities like the total number of particles or the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the lateral particle density from this assumption arising from various reasons are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located at the Karlsruhe Institute of Technology (Campus North), Germany. The lateral distributions of charged particles are deduced from the basic information provided by the Grande scintillators - the energy deposits - first in the observation plane, then in the intrinsic shower plane. In all steps azimuthal dependences should be taken into account. As the energy deposit in the scintillators is dependent on the angles of incidence of the particles, azimuthal dependences are already involved in the first step: the conversion from the energy deposits to the charged particle density. This is done by using the Lateral Energy Correction Function (LECF) that evaluates the mean energy deposited by a charged particle taking into account the contribution of other particles (e.g. photons) to the energy deposit. By using a very fast procedure for the evaluation of the energy deposited by various particles we prepared realistic LECFs depending on the angle of incidence of the shower and on the radial and azimuthal coordinates of the location of the detector. Mapping the lateral density from the observation plane onto the intrinsic shower plane does not remove the azimuthal dependences arising from geometric and attenuation effects, in particular for inclined showers. Realistic procedures for applying correction factors are developed. Specific examples of the bias due to neglecting the azimuthal asymmetries in the conversion from the energy deposit in the Grande detectors to the lateral density of charged particles in the intrinsic shower plane are given. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Using Heavy Quark Effective Theory with non-perturbatively determined parameters in a quenched lattice calculation, we evaluate the splittings between the ground state and the first two radially excited states of the B(s) system at static order. We also determine the splitting between first excited and ground state, and between the B(s)* and B(s) ground states to order 1/m(b). The Generalized Eigenvalue Problem and the use of all-to-all propagators are important ingredients of our approach.
Resumo:
Coal mining and incineration of solid residues of health services (SRHS) generate several contaminants that are delivered into the environment, such as heavy metals and dioxins. These xenobiotics can lead to oxidative stress overgeneration in organisms and cause different kinds of pathologies, including cancer. In the present study the concentrations of heavy metals such as lead, copper, iron, manganese and zinc in the urine, as well as several enzymatic and non-enzymatic biomarkers of oxidative stress in the blood (contents of lipoperoxidation = TBARS, protein carbonyls = PC, protein thiols = PT, alpha-tocopherol = AT, reduced glutathione = GSH, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of six different groups (n = 20 each) of subjects exposed to airborne contamination related to coal mining as well as incineration of solid residues of health services (SRHS) after vitamin E (800 mg/day) and vitamin C (500 mg/day) supplementation during 6 months, which were compared to the situation before the antioxidant intervention (Avila et al., Ecotoxicology 18:1150-1157, 2009; Possamai et al., Ecotoxicology 18:1158-1164, 2009). Except for the decreased manganese contents, heavy metal concentrations were elevated in all groups exposed to both sources of airborne contamination when compared to controls. TBARS and PC concentrations, which were elevated before the antioxidant intervention decreased after the antioxidant supplementation. Similarly, the contents of PC, AT and GSH, which were decreased before the antioxidant intervention, reached values near those found in controls, GPx activity was reestablished in underground miners, and SOD, CAT and GST activities were reestablished in all groups. The results showed that the oxidative stress condition detected previously to the antioxidant supplementation in both directly and indirectly subjects exposed to the airborne contamination from coal dusts and SRHS incineration, was attenuated after the antioxidant intervention.
Resumo:
Multiconfiguration second-order perturbation theory, with the inclusion of relativistic effects and spin-orbit Coupling, was employed to investigate the nature of the ground and low-lying Lambda-S and Omega states of the TcN molecule. Spectroscopic constants, effective bond order, and potential energy curves for 13 low-lying Lambda-S states and 5 Omega states are given, The computed ground state of TcN is of Omega = 3 symmetry (R(e) = 1.605 angstrom and omega(e) = 1085 cm(-1)), originating mainly from the (3)Delta Lambda-S ground state. This result is contrasted with the nature of the ground state for other VIIB transtion-metal mononitrides, including X(3)Sigma(-) symmetry for MnN and Omega = 0(+) symmetry for ReN, derived also from a X(3)Sigma(-) state.