939 resultados para Hawaiian cooking.
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cassava is an important staple food for human and animal feeding in Cuba. Despite its importance, there is little or nonexistent information to diagnose preferences and frequency of consumption of cassava in that country. In this sense, the present article characterizes the preferences and frequency of consumption of cassava in the municipalities of Plaza de la Revolución-La Habana province, El Salvador–Guantanamo province and San José de Las Lajas–Mayabeque province in Cuba. A survey was conducted through a questionnaire containing twelve closed and two open questions. The sample was determined based on the number of total population of each municipality considering 95% as confidence interval and 5% as error margin. The results were statistically analyzed by calculating the absolute and the relative frequencies of each question. It was observed that the acquisition of cassava in the municipalities of Plaza de la Revolución, El Salvador and San José de las Lajas in Cuba is done by purchase small quantities of fresh cassava for home consumption within one week, due to the extreme perishability of cassava, which limits consumers' ability to store fresh roots at home. The choice of cassava is made based on both skin colour (light brown) and pulp (white) and empirical knowledge about its ease of cooking, and that cassava is mostly consumed in boiled and fried forms up to four times a week in times where there is root market supply with the desirable culinary characteristics (cooking facility), that is, from September to December.
Resumo:
The aim of this study was to verify the carrot cooking most suitable method to minimize nutrient losses. Carrot peel slices were subjected to pre cooking tests that were initiated with 0.5 min of duration and then increased in 0.5 min successively. The carrot pieces texture was monitored during the pre tests so all would havethe same texture independent of the type of cooking. The degree of softennes was evaluated by pressuring the pieces between the toes. The carrot pulp and pell were subjected to four types of heat treatment (pressure, immersion, microwave, and steam), after that they were pounded with a food processor and stored at -18 ºC. The nutritional analyses were as follow: The evalu determination of proteins, lipids, fibers, sugars reducers, total of ascorbic acid content and minerals (iron, calcium, zinc, magnesium, potassium, phosphorus, and calcium). The analyses were accomplished with fresh carrot and after cooking with the different methods. The peel of the carrot presented as amounts of proteins, lipids, fibers percentages, sugars reducers, total and ascorbic acid content equivalent to the pulp. In addition, the minerals content was superior in the peel in relation to the pulp, presenting respective percentages of 38,10%, 95,12%, 47,04%, 58,88%, 70,27% and 21,27%. There were nutrient losses in relation to the raw vegetable, when the carrot pieces were submitted to the different cooking methods. The methods of steaming and microwave had lower nutritional losses.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Table of Contents: Historic Voyage through Hawaiian Islands, page 8 Focus on Fire Management, page 10-17 A Circle of Trees, page 19 First Friends in Montana, page 22
Resumo:
Under the 1994 amendments to the Marine Mammal Protection Act (MMPA), the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) are required to publish Stock Assessment Reports for all stocks of marine mammals within U.S. waters, to review new information every year for strategic stocks and every three years for non-strategic stocks, and to update the stock assessment reports when significant new information becomes available. This report presents stock assessments for 13 Pacific marine mammal stocks under NMFS jurisdiction, including 8 “strategic” stocks and 5 “non-strategic” stocks (see summary table). A new stock assessment for humpback whales in American Samoa waters is included in the Pacific reports for the first time. New or revised abundance estimates are available for 9 stocks, including Eastern North Pacific blue whales, American Samoa humpback whales, five U.S. west coast harbor porpoise stocks, the Hawaiian monk seal, and southern resident killer whales. A change in the abundance estimate of Eastern North Pacific blue whales reflects a recommendation from the Pacific Scientific Review Group to utilize mark-recapture estimates for this population, which provide a better estimate of total population size than the average of recent line-transect and mark-recapture estimates. The ‘Northern Oregon/Washington Coast Stock’ harbor porpoise stock assessment includes a name change (‘Oregon’ is appended to ‘Northern Oregon’) to reflect recent stock boundary changes. Changes in abundance estimates for the two stocks of harbor porpoise that occur in Oregon waters are the result of these boundary changes, and do not reflect biological changes in the populations. Updated information on the three stocks of false killer whales in Hawaiian waters is also included in these reports. Information on the remaining 50 Pacific region stocks will be reprinted without revision in the final 2009 reports and currently appears in the 2008 reports (Carretta et al. 2009). Stock Assessments for Alaskan marine mammals are published by the National Marine Mammal Laboratory (NMML) in a separate report. Pacific region stock assessments include those studied by the Southwest Fisheries Science Center (SWFSC, La Jolla, California), the Pacific Islands Fisheries Science Center (PIFSC, Honolulu, Hawaii), the National Marine Mammal Laboratory (NMML, Seattle, Washington), and the Northwest Fisheries Science Center (NWFSC, Seattle, WA). Northwest Fisheries Science Center staff prepared the report on the Eastern North Pacific Southern Resident killer whale. National Marine Mammal Laboratory staff prepared the Northern Oregon/Washington coast harbor porpoise stock assessment. Pacific Islands Fisheries Science Center staff prepared the report on the Hawaiian monk seal. Southwest Fisheries Science Center staff prepared stock assessments for 9 stocks. The stock assessment for the American Samoa humpback whale was prepared by staff from the Center for Coastal Studies, Hawaiian Islands Humpback National Marine Sanctuary, the Smithsonian Institution, and the Southwest Fisheries Science Center. Draft versions of the stock assessment reports were reviewed by the Pacific Scientific Review Group at the November 2008, Maui meeting. The authors also wish to thank those who provided unpublished data, especially Robin Baird and Joseph Mobley, who provided valuable information on Hawaiian cetaceans. Any omissions or errors are the sole responsibility of the authors. This is a working document and individual stock assessment reports will be updated as new information on marine mammal stocks and fisheries becomes available. Background information and guidelines for preparing stock assessment reports are reviewed in Wade and Angliss (1997). The authors solicit any new information or comments which would improve future stock assessment reports. These Stock Assessment Reports summarize information from a wide range of sources and an extensive bibliography of all sources is given in each report. We strongly urge users of this document to refer to and cite original literature sources rather than citing this report or previous Stock Assessment Reports. If the original sources are not accessible, the citation should follow the format: [Original source], as cited in [this Stock Assessment Report citation].
Resumo:
The nocturnal, terrestrial frog Eleutherodactylus coqui, known as the Coqui, is endemic to Puerto Rico and was accidentally introduced to Hawai‘i via nursery plants in the late 1980s. Over the past two decades E. coqui has spread to the four main Hawaiian Islands, and a major campaign was launched to eliminate and control it. One of the primary reasons this frog has received attention is its loud mating call (85–90 dB at 0.5 m). Many homeowners do not want the frogs on their property, and their presence has influenced housing prices. In addition, E. coqui has indirectly impacted the floriculture industry because customers are reticent to purchase products potentially infested with frogs. Eleutherodactylus coqui attains extremely high densities in Hawai‘i, up to 91,000 frogs ha-1, and can reproduce year-round, once every 1–2 months, and become reproductive around 8–9 months. Although the Coqui has been hypothesized to potentially compete with native insectivores, the most obvious potential ecological impact of the invasion is predation on invertebrate populations and disruption of associated ecosystem processes. Multiple forms of control have been attempted in Hawai‘i with varying success. The most successful control available at this time is citric acid. Currently, the frog is established throughout the island of Hawai‘i but may soon be eliminated on the other Hawaiian Islands via control efforts. Eradication is deemed no longer possible on the island of Hawai‘i.
Resumo:
The Brown Tree Snake (Boiga irregularis) has caused ecological and economic damage to Guam, and the snake has the potential to colonize other islands in the Pacific Ocean. This study quantifies the potential economic damage if the snake were translocated, established in the state of Hawaii, and causing damage at levels similar to those on Guam. Damages modeled included costs of medical treatments due to snakebites, snake-caused power outages, and decreased tourism resulting from effects of the snake. Damage caused by presence of the Brown Tree Snake on Guam was used as a guide to estimate potential economic damage to Hawaii from both medical- and power outage–related damage. To predict tourism impact, a survey was administered to Hawaiian tourists that identified tourist responses to potential effects of the Brown Tree Snake. These results were then used in an input-output model to predict damage to the state economy. Summing these damages resulted in an estimated total potential annual damage to Hawaii of between $593 million and $2.14 billion. This economic analysis provides a range of potential damages that policy makers can use in evaluation of future prevention and control programs.