892 resultados para Hamiltonian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic properties of disordered binary alloys are studied via the calculation of the average Density of States (DOS) in two and three dimensions. We propose a new approximate scheme that allows for the inclusion of local order effects in finite geometries and extrapolates the behavior of infinite systems following finite-size scaling ideas. We particularly investigate the limit of the Quantum Site Percolation regime described by a tight-binding Hamiltonian. This limit was chosen to probe the role of short range order (SRO) properties under extreme conditions. The method is numerically highly efficient and asymptotically exact in important limits, predicting the correct DOS structure as a function of the SRO parameters. Magnetic field effects can also be included in our model to study the interplay of local order and the shifted quantum interference driven by the field. The average DOS is highly sensitive to changes in the SRO properties and striking effects are observed when a magnetic field is applied near the segregated regime. The new effects observed are twofold: there is a reduction of the band width and the formation of a gap in the middle of the band, both as a consequence of destructive interference of electronic paths and the loss of coherence for particular values of the magnetic field. The above phenomena are periodic in the magnetic flux. For other limits that imply strong localization, the magnetic field produces minor changes in the structure of the average DOS. © World Scientific Publishing Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple description of the KP hierarchy and its multi-hamiltonian structure is given in terms of two Bose currents. A deformation scheme connecting various W-infinity algebras and the relation between two fundamental nonlinear structures are discussed. Properties of Faá di Bruno polynomials are extensively explored in this construction. Applications of our method are given for the Conformal Affine Toda model, WZNW models and discrete KP approach to Toda lattice chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most work on supersingular potentials has focused on the study of the ground state. In this paper, a global analysis of the ground and excited states for the successive values of the orbital angular momentum of the supersingular plus quadratic potential is carried out, making use of centrifugal plus quadratic potential eigenfunction bases. First, the radially nodeless states are variationally analyzed for each value of the orbital angular momentum using the corresponding functions of the bases; the output includes the centrifugal and frequency parameters of the auxiliary potentials and their eigenfunction bases. In the second stage, these bases are used to construct the matrix representation of the Hamiltonian of the system, and from its diagonalization the energy eigenvalues and eigenvectors of the successive states are obtained. The systematics of the accuracy and convergence of the overall results are discussed with emphasis on the dependence on the intensity of the supersingular part of the potential and on the orbital angular momentum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider a finite body of mass m (C1) with moments of inertia A, B and C. This body orbits another one of mass much larger M (C2), which at first will be taken as a point, even if it is not completely spherical. The body C1, when orbit C2, performs a translational motion near a Keplerian. It will not be a Keplerian due to external disturbances. We will use two axes systems: fixed in the center of mass of C1 and other inertial. The C1 attitude, that is, the dynamic rotation of this body is know if we know how to situate mobile system according to inertial axes system. The strong influence exerted by C2 on C1, which is a flattened body, generates torques on C1, what affects its dynamics of rotation. We will obtain the mathematical formulation of this problem assuming C1 as a planet and C2 as the sun. Also applies to case of satellite and planet. In the case of Mercury-Sun system, the disturbing potential that governs rotation dynamics, for theoretical studies, necessarily have to be developed by powers of the eccentricity. As is known, such expansions are delicate because of the convergence issue. Thus, we intend to make a development until the third order (superior orders are not always achievable because of the volume of terms generated in cases of first-order resonances). By defining a modern set of canonical variables (Andoyer), we will assemble a disturbed Hamiltonian problem. The Andoyer's Variables allow to define averages, which enable us to discard short-term effects. Our results for the resonant angle variation of Mercury are in full agreement with those obtained by D'Hoedt & Lemaître (2004) and Rambaux & Bois (2004)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taking into account the presence of long-range dipolar interactions, we propose a model hamiltonian to calculate the canted-paramagnetic phase boundary of EuTe at low temperatures. By using spin-wave techniques we show that the critical field depends on T2 asymptotically. Our calculations are in good agreement with the experimental data. © 1981.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method to probe the diverse phases for the extended Hubbard model (EHM), including the correlated hopping term, is presented. We extend an effective medium approach [1] to a bipartite lattice, allowing for charge- and/or spin-ordered phases. We calculate the necessary correlation functions to build the EHM phase diagram.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present a theoretical photoluminescence (PL) for p-doped GaAs/InGaAsN nanostructures arrays. We apply a self-consistent method in the framework of the effective mass theory. Solving a full 8 x 8 Kane's Hamiltonian, generalized to treat different materials in conjunction with the Poisson equation, we calculate the optical properties of these systems. The trends in the calculated PL spectra, due to many-body effects within the quasi-two-dimensional hole gas, are analyzed as a function of the acceptor doping concentration and the well width. Effects of temperature in the PL spectra are also investigated. This is the first attempt to show theoretical luminescence spectra for GaAs/InGaAsN nanostructures and can be used as a guide for the design of nanostructured devices such as optoelectronic devices, solar cells, and others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general the term "Lagrangian coherent structure" (LCS) is used to make reference about structures whose properties are similar to a time-dependent analog of stable and unstable manifolds from a hyperbolic fixed point in Hamiltonian systems. Recently, the term LCS was used to describe a different type of structure, whose properties are similar to those of invariant tori in certain classes of two-dimensional incompressible flows. A new kind of LCS was obtained. It consists of barriers, called robust tori that block the trajectories in certain regions of the phase space. We used the Double-Gyre Flow system as the model. In this system, the robust tori play the role of a skeleton for the dynamics and block, horizontally, vortices that come from different parts of the phase space. (C) 2012 Elsevier B.V. All rights reserved.