991 resultados para Halls Mills


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new photocatalyst indicator ink based on methylene blue (MB) is described that allows the presence and activity of a thin (15 nm) photocatalytic film to be assessed in seconds. The ink is very stable (shelf life > 6 months) and the color change (blue to colorless) striking. The ink utilizes a sacrificial electron donor, glycerol, to trap the photogenerated holes, leaving the photogenerated electrons to react with MB to produce its. reduced, leuco, form (LMB). The efficacy of the MB ink is due to the presence of acid in its formulation, which curtails significantly. the otherwise usual, rapid reoxidation of LMB by ambient O-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A UVB specific dosimeter is described comprising: a redox dye (2,6-dichloroindophenol, DCIP), a semiconductor ( tin(IV) oxide, SnO2) and a sacrificial electron donor ( glycerol) dispersed in a polymer ( hydroxy ethyl cellulose, HEC) film. The dosimeter is blue in the absence of UVB light but rapidly loses colour on exposure to UVB light. The spectral characteristics of a typical UVB dosimeter film and the mechanism by which the colour change occurs are detailed. DCIP UVB dosimeter films exhibit a response that is related to the irradiance level and duration of UVB exposure, the level of SnO2 present and to a lesser extent the level of glycerol present. The response of the dosimeter appears to be independent of dye concentration and film thickness. Furthermore, DCIP UVB dosimeter films respond to solar simulated light, exhibiting a colour loss that can be simply related to the Minimal Erythemal Dose (MED) exposure for skin type II. As a consequence, such indicators have potential for measuring solar radiation exposure and providing an early warning of erythema for most Caucasian skin (i.e. skin type II).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline SnO2, ncSnO(2), is used as a photosensitiser in a colourimetric O-2 indicator that comprises a sacrificial electron donor, glycerol, a redox dye, methylene blue (MB), and an encapsulating polymer, hydroxyethyl cellulose (HEC). Upon exposure to a burst of UVB light the indicator is activated (photo-bleached) as the MB is photoreduced by the ncSnO(2) particles. In the absence of oxygen, the film stays bleached, but recovers its original colour upon exposure to oxygen. Unlike its TiO2-based predecessor, the HEC/glycerol/MB/ncSnO(2) O-2 indicator is not activated by UVA light from white fluorescent lamps, but is by UVB light. This feature provides much greater control in the activation of the indicator. Other work shows the rate of activation depends upon I-0.75, where I is the UVB irradiance, indicating a partial dependence upon the electron-hole recombination process. The half-life of the recovery of the original colour of a UV-activated film, t(50), is directly proportional to the ambient level of oxygen. The advantages of using this indicator in modified atmosphere packaging as a possible quality assurance indicator are discussed briefly. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hydrogen peroxide vapour indicator is described comprising a triarylmethane dye, lissamine green (LG), dissolved in a polymer, polyvinyl alcohol (PVA). The indicator is green/blue in the absence of hydrogen peroxide vapour but is rapidly bleached in the presence of hydrogen peroxide vapour. The kinetics of LG bleaching appear approximately first order with respect [LG] and the concentration of H2O2, which, in turn, is proportional to the partial pressure of H2O2. However, the kinetics also appear to depend directly upon the reciprocal of the film thickness, implying some dependence upon the diffusion of the H2O2 vapour through the indicator film. Like most other H2O2 indicator films (such as starch-iodide paper), the LG/PVA indicator is not particularly selective and responds to most other volatile strong oxidising agents, such as ozone and chlorine. However, it is rapid in response (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classic, non-photochemical blue bottle experiment involves the reaction of methylene blue (MB) with deprotonated glucose, to form a bleached form of the dye, leuco-methylene blue (LMB), and subsequent colour recovery by shaking with air. This reaction is a popular demonstrator of key principles in kinetics and reaction mechanisms. Here it is modified so as to highlight features of homogenous and heterogeneous photoinduced electron transfer (PET) (Pure Appl. Chem., 2007, 79, 293-465) reactions, i.e. blue bottle light experiments. The homogeneous blue bottle light experiment uses methylene blue, MB, as the photo-sensitizer and triethanolamine as the sacrificial electron donor. Visible light irradiation of this system leads to its rapid bleaching, followed by the ready restoration of its original colour upon shaking away from the light source. The heterogeneous blue bottle light experiment uses titania as the photo-sensitizer, MB as a redox indicator and glucose as the sacrificial electron donor. UVA light irradiation of this system leads to the rapid bleaching of the MB and the gradual restoration of its original colour with shaking and standing. The latter 'dark' step can be made facile and more demonstrator-friendly by using platinised titania particles. These two photochemical versions of the blue bottle experiment are used to explore the factors which underpin homogeneous and heterogeneous PET reactions and provide useful demonstrations of homogeneous and heterogeneous photochemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel UV dosimeter is described comprising a tetrazolium dye, neotetrazolium chloride (NTC), dissolved in a film of polymer, polyvinyl alcohol (PVA). The dosimeter is pale yellow/colourless in the absence of UV light, and turns red upon exposure to UV light. The spectral characteristics of a typical UV dosimeter film and the mechanism through which the colour change occurs are detailed. The NTC UV dosimeter films exhibit a response to UV light that is related to the intensity and duration of UV exposure, the level of dye present in the films and the thickness of the films themselves. The response of the dosimeter is temperature independent over the range 20-40 degrees C and, like most UV dosimeters, exhibits a cosine-like response dependence upon irradiance angle. The introduction of a layer of a UV-screening compound which slows the rate at which the dosimeter responds to UVR enables the dosimeter response to be tailored to different UV doses. The possible use of these novel dosimeters to measure solar UV exposure dose is discussed. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An oxygen indicator is described, comprising nanoparticles of titania dispersed in hydroxyethyl cellulose (HEC) polymer film containing a sacrificial electron donor, glycerol, and the redox indicator, indigo-tetrasulfonate (ITS). The indicator is blue-coloured in the absence of UV light, however upon exposure to UV light it not only loses its colour but also luminesces, unless and until it is exposed to oxygen, whereupon its original colour is restored. The initial photobleaching spectral ( absorbance and luminescence) response characteristics in air and in vacuum are described and discussed in terms of a simple reaction scheme involving UV activation of the titania photocatalyst particles, which are used to reduce the redox dye, ITS, to its leuco form, whilst simultaneously oxidising the glycerol to glyceraldehye. The response characteristics of the activated, that is, UV photobleached, form of the indicator to oxygen are also reported and the possible uses of such an indicator to measure ambient O-2 levels are discussed. Copyright (C) 2008 Andrew Mills et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of several pretreatment methods on the wettability of polycrystalline titania-coated glass (Pilkington Activ) and plain glass are investigated. UV/ozone, immersion in aqua regia, and heating (T > 500 degrees C) render both substrates superhydrophilic (i.e., water contact angle (CA)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An indicator ink based on the redox dye 2,6-dichloroindophenol ( DCIP) is described, which allows the rapid assessment of the activity of thin, commercial photocatalytic films, such as Activ. The ink works via a photoreductive mechanism, DCIP being reduced to dihydro-DCIP within ca. 7.5 minutes exposure to UVA irradiation of moderate intensity ( ca. 4.8mW cm(-2)). The kinetics of photoreduction are found to be independent of the level of dye present in the ink formulation, but are highly sensitive to the level of glycerol. This latter observation may be associated with a solvatochromic effect, whereby the microenvironment in which the dye finds itself and, as a consequence, its reactivity is altered significantly by small changes in the glycerol content. The kinetics of photoreduction also appear linearly dependent on the UVA light intensity with an observed quantum efficiency of ca. 1.8 x 10(-3). Copyright (C) 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reports the behaviour of three photocatalyst indicator inks, based on the redox dyes: methylene blue (NIB), resorufin (Rf) and 2,6-dichloroindophenol (DCIP), and assess their performance in comparison to the pioneering resazurin (Rz)-based ink for the rapid assessment of the activity of very thin, photocatalyst films, such as Activ (TM) self-cleaning glass. From a commercial 'demonstrator of photocatalysis' perspective, all three redox dyes appear more attractive compared to Rz since all generate colourless products in the ink formulation when photoreduced on Activ (TM) under anaerobic conditions, whereas, the reduced product from Rz, the redox dye resorufin, Rf. is pink in colour. However, the ink based on Rf is far too slow to effect the rapid measurement of photocatalytic activity even in the absence of oxygen, and in the presence of oxygen the latter inhibits the overall kinetics of photoreduction by re-oxidising the reduced product, dihydroresorufin, HRf, back to Rf. Similarly, despite the attractive rapid rate of photobleaching for NIB under anaerobic conditions, compared to the other redox dyes, the reduced product of the MB-based ink. leuco-MB, is so oxygen-sensitive that the ink cannot be photoreduced under aerobic conditions, thus rendering the ink unsuitable for use in the field. The DCIP-based ink is slightly less easy to photoreduce under both anaerobic and ambient atmospheric conditions compared to the Rz-based ink. However. in addition to its more attractive colour change, the DCIP-based ink is unaffected by the ambient level of oxygen present (%O-2) and the relative humidity (%RH), whereas, for the Rz-based ink, both parameters effect the photoreduction kinetics. By incorporating the DCIP ink into a felt-tipped pen, the ink is suitable for use in the laboratory and field to perform not only a qualitative test, but also to allow a semi-quantitative analysis of photocatalytic activity by eye. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A solvent-based, irreversible oxygen indicator ink is described, comprising semiconductor photocatalyst nanoparticles, a solvent-soluble redox dye, mild reducing agent and polymer. Based on such an ink, a film - made of titanium dioxide, a blue, solvent-soluble, coloured ion-paired methylene blue dye, glycerol and the polymer zein - loses its colour rapidly (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continuing interest in semiconductor photochemistry, SPC, and the emergence of commercial products that utilise films of photocatalyst materials, has created an urgent need to agree a set of methods for assessing photocatalytic activity and international committees are now meeting to address this issue. This article provides a brief overview of two of the most popular current methods employed by researchers for assessing SPC activity. and one which has been published just recently and might gain popularity in the future, given its ease of use. These tests are: the stearic acid (SA) test, the methylene blue (MB) test and the resazurin (Rz) ink test, respectively. The basic photochemical and chemical processes that underpin each of these tests are described, along with typical results for laboratory made sol-gel titania films and a commercial form of self-cleaning glass, Activ (TM). The pros and cons of their future use as possible standard assessment techniques are considered. (C) 2007 Elsevier B.V. All rights reserved.