1000 resultados para HUMSN BEHAVIOUR
Resumo:
Ligational behaviour of (E)-2-amino-N'-1-(2-hydroxyphenyl)ethylidene]benzohydrazide (Aheb) towards later 3d metal ionscopper(II), cobalt(II), manganese(II), zinc(II), cadmium(II) and nickel(IV)] has been studied. Their structures have been elucidated on the basis of spectral (IR, H-1 NMR, UV-Vis, EPR and FAB-mass), elemental analyses, conductance measurements, magnetic moments, and thermal studies. During complexation Ni(II) ion has got oxidized to Ni(IV). The changes in the bond parameters of the ligand on complexation has been discussed by comparing the crystal structure of the ligand with that of its Ni(IV) complex. The X-ray single crystal analysis of Ni(aheb)(2)]Cl-2 center dot 4H(2)O has confirmed an octahedral geometry around the metal ion. EPR spectra of the Cu(II) complex in polycrystalline state at room (300 K) and liquid nitrogen temperature (77 K) were recorded and their salient features are reported. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Reproductive modes are diverse and unique in anurans. Selective pressures of evolution, ecology and environment are attributed to such diverse reproductive modes. Globally forty different reproductive modes in anurans have been described to date. The genus Nyctibatrachus has been recently revised and belongs to an ancient lineage of frog families in the Western Ghats of India. Species of this genus are known to exhibit mountain associated clade endemism and novel breeding behaviours. The purpose of this study is to present unique reproductive behaviour, oviposition and parental care in a new species Nyctibatrachus kumbara sp. nov. which is described in the paper. Nyctibatrachus kumbara sp. nov. is a medium sized stream dwelling frog. It is distinct from the congeners based on a suite of morphological characters and substantially divergent in DNA sequences of the mitochondrial 16S rRNA gene. Males exhibit parental care by mud packing the egg clutch. Such parental care has so far not been described from any other frog species worldwide. Besides this, we emphasize that three co-occurring congeneric species of Nyctibatrachus, namely N. jog, N. kempholeyensis and Nyctibatrachus kumbara sp. nov. from the study site differ in breeding behaviour, which could represent a case of reproductive character displacement. These three species are distinct in their size, call pattern, reproductive behaviour, maximum number of eggs in a clutch, oviposition and parental care, which was evident from the statistical analysis. The study throws light on the reproductive behaviour of Nyctibatrachus kumbara sp. nov. and associated species to understand the evolution and adaptation of reproductive modes of anurans in general, and Nyctibatrachus in particular from the Western Ghats.
Resumo:
We report the synthesis of branched ZnO nanostructures by vapour phase transport and their multistage effect in enhancing the field emission behaviour. First, the ZnO nanowires (first generation) are grown and second generation nanowires are grown on first one and so on to obtain the branched structures. The number of branches increases and the diameter of the branches decreases till the third generation nanowires. Fourth generation onwards, dense branched structures are obtained eventually yielding nanoforest-like morphology. The field emission behaviour is found to improve till the third generation and is assigned to smaller diameter of the branches. (C) 2014 AIP Publishing LLC.
Resumo:
Ti-6Al-4V is widely used to prepare biomedical implant for orthopaedic and dental applications, but it is an expensive choice relative to other implant materials such as stainless steels and Co-Cr alloys, in large part due to the high manufacturing cost. Adding boron to refine the as cast microstructure of Ti-6Al-4V can eliminate the need for extensive hot working and thereby reduce processing costs. The effect of 0.1 wt-% boron addition and the choice of processing route (forging or extrusion) was studied in the context of potential biomedical applications. Corrosion tests in simulated body fluid indicated that the presence of boron increased the corrosion rate of Ti-6Al-4V and that the increase was higher for forged alloys than for extruded alloys. Boron addition and processing route were found to have a minimal effect on the viability of osteoblasts on the alloy surfaces. It is concluded that the addition of boron could offer advantages during the processing of Ti-6Al-4V for biomedical applications.
Resumo:
Na-ion batteries are currently the focus of significant research activity due to the relative abundance of sodium and its consequent cost advantages. Recently, the pyrophosphate family of cathodes has attracted considerable attention, particularly Li2FeP2O7 related to its high operating voltage and enhanced safety properties; in addition the sodium-based pyrophosphates Na2FeP2O7 and Na2MnP2O7 are also generating interest. Herein, we present defect chemistry and ion migration results, determined via atomistic simulation techniques, for Na2MP2O7 (where M = Fe, Mn) as well as findings for Li2FeP2O7 for direct comparison. Within the pyrophosphate framework the most favourable intrinsic defect type is found to be the antisite defect, in which alkali-cations (Na/Li) and M ions exchange positions. Low activation energies are found for long-range diffusion in all crystallographic directions in Na2MP2O7 suggesting three-dimensional (3D) Na-ion diffusion. In contrast Li2FeP2O7 supports 2D Li-ion diffusion. The 2D or 3D nature of the alkali-ion migration pathways within these pyrophosphate materials means that antisite defects are much less likely to impede their transport properties, and hence important for high rate performance.
Resumo:
An AlCrCuNiFeCo high entropy alloy (HEA), which has simple face centered cubic (FCC) and body centered cubic (BCC) solid solution phases as the microstructural constituents, was processed and its high temperature deformation behaviour was examined as a function of temperature (700-1030 degrees C) and strain rate (10(-3)-10(-1) s(-1)), so as to identify the optimum thermo-mechanical processing (TMP) conditions for hot working of this alloy. For this purpose, power dissipation efficiency and deformation instability maps utilizing that the dynamic materials model pioneered by Prasad and co-workers have been generated and examined. Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate two distinct deformation domains within the range of experimental conditions examined, with the combination of 1000 degrees C/10(-3) s(-1) and 1030 degrees C/10(-2) s(-1) being the optimum for hot working. Flow instabilities associated with adiabatic shear banding, or localized plastic flow, and or cracking were found for 700-730 degrees C/10(-3)-10(-1) s(-1) and 750-860 degrees C/10(-1.4)-10(-1) s(-1) combinations. A constitutive equation that describes the flow stress of AlCrCuNiFeCo alloy as a function of strain rate and deformation temperature was also determined. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A new ruthenium pincer complex RuHCl(CO)(PNP)] (PNP = PhCH2N(CH2CH2PPh2)(2)) (1) was synthesized and characterized. The reactivity of complex 1 with electrophilic reagents XOTf (X = H, CH3, and Me3Si; OTf = CF3SO3) was studied by variable temperature NMR spectroscopy with an aim to observe and characterize sigma complexes of type Ru(eta(2)-HX)Cl(CO)(PNP)]OTf] (X = H (2), CH3 (3), Me3Si (4)). Reaction of complex 1 with HOTf resulted in the formation of the dihydrogen complex, Ru(eta(2)-H-2)Cl(CO)(PNP)OTf] (2). On the other hand, the reaction between complex 1 and MeOTf and Me3SiOTf resulted in the direct elimination of MeCl and Me3SiCl via a S(N)2 type of reaction without the intermediacy of the respective sigma complexes 3 and 4. This contrasting reactivity behaviour has been rationalized taking into consideration the approach of the relatively bulky electrophites CH3+ and Me3Si+ onto the hydride moiety of the ruthenium fragment, which is sterically hindered.
Resumo:
Mechanochemically activated reactants were found to facilitate the synthesis of fine powders comprising 200-400 nm range crystallites of BaBi4Ti4O15 at a significantly lower temperature (700 A degrees C) than that of solid-state reaction route. Reactants (CaCO3, Bi2O3 and TiO2) in stoichiometric ratio were ball milled for 48 h to obtain homogeneous mixture. The evolution of the BaBi4Ti4O15 phase was systematically followed using X-ray powder diffraction (XRD) technique. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to probe its structural and microstructural details. The electron diffraction studies established the presence of correlated octahedral rotations and associated long-range polar ordering. High-resolution TEM imaging nevertheless revealed structural inhomogeneities leading to intergrowth defects. Dense BaBi4Ti4O15 ceramics with an average grain size of 0.9 mu m were fabricated using mechanochemically assisted synthesized powders at relatively low temperature (1000 A degrees C). The effect of grain size on the dielectric and relaxor behaviour of BaBi4Ti4O15 ceramics was investigated. Fine-grained ceramics (average grain size similar to 0.9 mu m) showed higher diffusion in phase transition, lower temperature of phase transition, lower Vogel-Fulcher freezing temperature and higher activation energy for the polarization reversal than those for coarse-grained ceramics (average grain size similar to 7 mu m) fabricated via the conventional solid-state reaction route.
Resumo:
Textured silicon (Si) substrate were prepared using various texturing methods both chemical and physical and their water contact angle, surface topography and Raman spectra were studied and investigated. The effect of plasma and chemical treatment on micro/nanostructure and roughness of the surface with and without deposition of Octadecyltrichlorosilane (ODTS, Cl3Si (CH3)(17)), self-assembled monolayer (SAM) is investigated for achieving higher water contact angle (theta(c)). The importance of synergism of texturing with deposition of ODTS SAM in preparing superhydrophobic silicon surfaces has been discussed. It is shown that superhydrophobic silicon surfaces can be achieved on silicon surfaces by coating with ODTS, irrespective of whether it is textured or not, polished or unpolished, provided a chemical treatment is given to the surface prior to the ODTS coating.
Resumo:
Supramolecular organization of a metal complex may significantly contribute to the magnetization dynamics of mononuclear SMMs. This is illustrated for a heptacoordinated Fe(II) complex with rather moderate Ising-type anisotropy for which a slow magnetization relaxation with significant energy barrier was reached when this complex was properly organized in the crystal lattice. Incidentally, it is the first example of single-ion magnet behaviour of Fe(II) in a pentagonal bipyramid surrounding.
Resumo:
A comprehensive experimental study has been made on angular sand to investigate various aspects of mechanical behavior. A hollow cylinder torsion testing apparatus is used in this program to apply a range of stress conditions on this angular quartzitic fine sand under monotonic drained shear. The effect of the magnitude and inclination of the principal stresses on an element of sand is studied through these experiments. This magnitude and inclination of the principal stresses are presented as an ``ensemble measure of fabric in sands''. This ensemble measure of fabric in the sands evolves through the shearing process, and reaches the final state, which indeed has a unique fabric. The sand shows significant variation in strength with changing inclination of the principal stresses. The locus of the final stress state in principal stress space is also mapped from these series of experiments. Additional aspects of non-coaxiality, a benchmarking exercise with a few constitutive models is presented here. This experimental approach albeit indirect shows that a unique state which is dependent on the fabric, density and confining stress exists. This suite of experiments provides a well-controlled data set for a clear understanding on the mechanical behavior of sands.
Resumo:
A micromechanical approach is considered here to predict the deformation behaviour of Rheocast A356 (Al-Si-Mg) alloy. Two representative volume elements (RVEs) are modelled in the finite element (FE) framework. Two dimensional approximated microstructures are generated assuming elliptic grains, based on the grain size, shape factor and area fraction of the primary Al phase of the said alloy at different processing condition. Plastic instability is shown using stress and strain distribution between the Al rich primary and Si rich eutectic phases under different boundary conditions. Boundary conditions are applied on the approximated RVEs in such a manner, so that they represent the real life situation depending on their position on a cylindrical tensile test sample. FE analysis is carried out using commercial finite element code ABAQUS without specifying any damage or failure criteria. Micro-level in-homogeneity leads to incompatible deformation between the constituent phases of the rheocast alloy and steers plastic strain localisation. Plastic stain localised regions within the RVEs are predicted as the favourable sites for void nucleation. Subsequent growth of nucleated voids leads to final failure of the materials under investigation.
Resumo:
The relationship between the as-cast microstructure and creep behaviour of the heat-resistant MRI230D Mg alloy produced by two different casting technologies is investigated. The alloy in both ingot-casting (IC) and high pressure die-casting (HPDC) conditions consists of alpha-Mg, 06 ((Mg,AI)(2)Ca), Al-Mn and Sn-Mg-Ca rich phases. However, the HPDC alloy resulted in relatively finer grain size and higher volume fraction of finer, denser network of eutectic C36 phase in the as-cast microstructure as compared to that of the IC alloy. The superior creep resistance exhibited by the HPDC alloy at all the stress levels and temperatures employed in the present investigation was attributed to the more effective dispersion strengthening effect caused by the presence of finer and denser network of the C36 phase. The increased amount of the eutectic C36 phase was the only change observed in the microstructures of both alloys following creep tests. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Co3O4 and Co3O4/MWCNTs were prepared by hydrothermal process under autogenous pressure in Teflon lined autoclave and calcined at 250 degrees C. Both samples were characterized by PXRD, FT-IR, SEM-EDS, TEM & FT-Raman to evaluate their surface and bulk properties. The PXRD pattern of the materials indicated the formation of cubic phase of Co3O4. FT-IR results showed the presence of metal oxygen bond in the samples. The SEM and TEM images of the Co3O4 / MWCNTs indicated spherical and cubic aggregates of metal oxide particles (10-30 nm) decorated both on the surface and inside the tubes of carbon nanotubes. The characteristic Ig and Id (graphitic and defects) Raman bands indicated the retention of tubular structure of MWCNTs even after the deposition of Co3O4. The calcined Co3O4-MWCNTs composites and Co3O4 exhibited specific capacitance of 284 & 205 F/g at a sweep rate of 2mVs(-1) in 6M KOH by cyclic voltammetry. The psuedocapacitance performances of calcined Co3O4-MWCNTs were found to be better than Co3O4. Chronopotentiometric studies made for the materials at a current density of 500mA/g indicated 100% columbic efficiency at 2000th cycle for Co3O4/ MWCNTs which is a better electrode material than Co3O4.
Resumo:
NiFeCr nanoparticles with a Ni-rich composition were synthesized using a wet chemical synthesis technique. As-synthesized nanoparticles were crystalline with an average size of 6.8 +/- 2.5 nm. For electrochemical analysis, as-synthesized nanoparticles were mixed with epoxy and coated over a mild steel substrate. Electrochemical measurements exhibited a very high polarization resistance and very low corrosion current for the nanoparticle-epoxy coated sample illustrating high resistance of the NiFeCr nanoparticle-epoxy coating towards highly corrosive media.