831 resultados para HLA-DO


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homologues of the human major histocompatibility complex (MHC) HLA-A, -B, -E, -F, and -G loci are present in all the Catarrhini (Old World primates, apes, and humans), and some of their allelic lineages have survived several speciation events. Analysis of 26 MHC class I cDNAs from seven different genera of New World primates revealed that the Callitrichinae (tamarins and marmosets) are an exception to these rules of MHC stability. In gene trees of primate MHC class I genes, sequences from the Callitrichinae cluster in a genus-specific fashion, whereas in the other genera of New World primates, as in the Catarrhini, they cluster in a transgeneric way. The genus-specific clustering of the Callitrichinae cDNAs indicates that there is no orthology between MHC class I loci in genera of this phyletic group. Additionally, the Callitrichinae genera exhibit limited variability of their MHC class I genes, in contrast to the high variability displayed by all other primates. Each Callitrichinae genus, therefore, expresses its own set of MHC class I genes, suggesting that an unusually high rate of turnover of loci occurs in this subfamily. The limited variability of MHC class I genes in the Callitrichinae is likely the result of the recent origin of these loci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The peptides bound to class II major histocompatibility complex (MHC) molecules extend out both ends of the peptide binding groove. This structural feature provided the opportunity to design multivalent polypeptide chains that cross-link class II MHC molecules through multiple, repetitive MHC binding sites. By using recombinant techniques, polypeptide oligomers were constructed that consist of up to 32 copies of an HLA-DR1-restricted T cell epitope. The epitope HA306–318, derived from influenza virus hemagglutinin, was connected by 12- to 36-aa long spacer sequences. These oligomers were found to cross-link soluble HLA-DR1 molecules efficiently and, upon binding to the MHC molecules of a monocyte line, to trigger signal transduction indicated by the enhanced expression of some cell surface molecules. A particularly strong effect was evident in the T cell response. A hemagglutinin-specific T cell clone recognized these antigens at concentrations up to three to four orders of magnitude lower than that of the peptide or the hemagglutinin protein. Both signal transduction in the monocyte and the proliferative response of the T cell were affected greatly by the length of the oligomer (i.e., the number of repetitive units) and the distance of the epitopes within the oligomer (spacing). Thus, the formation of defined clusters of T cell receptor/MHC/peptide antigen complexes appears to be crucial for triggering the immune response and can be used to enhance the antigenicity of a peptide antigen by oligomerizing the epitope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endothelial-derived G-protein–coupled receptor EDG-1 is a high-affinity receptor for the bioactive lipid mediator sphingosine-1-phosphate (SPP). In the present study, we constructed the EDG-1–green fluorescent protein (GFP) chimera to examine the dynamics and subcellular localization of SPP–EDG-1 interaction. SPP binds to EDG-1–GFP and transduces intracellular signals in a manner indistinguishable from that seen with the wild-type receptor. Human embryonic kidney 293 cells stably transfected with the EDG-1–GFP cDNA expressed the receptor primarily on the plasma membrane. Exogenous SPP treatment, in a dose-dependent manner, induced receptor translocation to perinuclear vesicles with a τ1/2 of ∼15 min. The EDG-1–GFP–containing vesicles are distinct from mitochondria but colocalize in part with endocytic vesicles and lysosomes. Neither the low-affinity agonist lysophosphatidic acid nor other sphingolipids, ceramide, ceramide-1-phosphate, or sphingosylphosphorylcholine, influenced receptor trafficking. Receptor internalization was completely inhibited by truncation of the C terminus. After SPP washout, EDG-1–GFP recycles back to the plasma membrane with a τ1/2 of ∼30 min. We conclude that the high-affinity ligand SPP specifically induces the reversible trafficking of EDG-1 via the endosomal pathway and that the C-terminal intracellular domain of the receptor is critical for this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A cytotoxic T lymphocyte (CTL) clone generated in vitro from the peripheral blood of a healthy HLA-A2-positive individual against a synthetic p53 protein-derived wild-type peptide (L9V) was shown to kill squamous carcinoma cell lines derived from two head and neck carcinomas, which expressed mutant p53 genes, in a L9V/HLA-A2 specific and restricted fashion. Thus, the normal tolerance against endogenously processed p53 protein-derived self-epitopes can be broken by peptide-specific in vitro priming. p53 protein-derived wild-type peptides might thus represent tumor associated target molecules for immunotherapeutical approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The understanding of the mutational mechanism that generates high levels of variation at microsatellite loci lags far behind the application of these genetic markers. A phylogenetic approach was developed to study the pattern and rate of mutations at a dinucleotide microsatellite locus tightly linked to HLA-DQB1 (DQCAR). A random Japanese population (n = 129) and a collection of multiethnic samples (n = 941) were typed at the DQB1 and DQCAR loci. The phylogeny of DQB1 alleles was then reconstructed and DQCAR alleles were superimposed onto the phylogeny. This approach allowed us to group DQCAR alleles that share a common ancestor. The results indicated that the DQCAR mutation rate varies drastically among alleles within this single microsatellite locus. Some DQCAR alleles never mutated during a long period of evolutionary time. Sequencing of representative DQCAR alleles showed that these alleles lost their ability to mutate because of nucleotide substitutions that shorten the length of uninterrupted CA repeat arrays; in contrast, all mutating alleles had relatively longer perfect CA repeat sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of the antitumor immune response after gene transfer of a foreign major histocompatibility complex class I protein, HLA-B7, was performed. Ten HLA-B7-negative patients with stage IV melanoma were treated in an effort to stimulate local tumor immunity. Plasmid DNA was detected within treated tumor nodules, and RNA encoding recombinant HLA-B7 or HLA-B7 protein was demonstrated in 9 of 10 patients. T cell migration into treated lesions was observed and tumor-infiltrating lymphocyte reactivity was enhanced in six of seven and two of two patients analyzed, respectively. In contrast, the frequency of cytotoxic T lymphocyte against autologous tumor in circulating peripheral blood lymphocytes was not altered significantly, suggesting that peripheral blood lymphocyte reactivity is not indicative of local tumor responsiveness. Local inhibition of tumor growth was detected after gene transfer in two patients, one of whom showed a partial remission. This patient subsequently received treatment with tumor-infiltrating lymphocytes derived from gene-modified tumor, with a complete regression of residual disease. Thus, gene transfer with DNA–liposome complexes encoding an allogeneic major histocompatibility complex protein stimulated local antitumor immune responses that facilitated the generation of effector cells for immunotherapy of cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considerable evidence indicates that CD4+ T cells are important in the pathogenesis of rheumatoid arthritis (RA), but the antigens recognized by these T cells in the joints of patients remain unclear. Previous studies have suggested that type II collagen (CII) and human cartilage gp39 (HCgp39) are among the most likely synovial antigens to be involved in T cell stimulation in RA. Furthermore, experiments have defined dominant peptide determinants of these antigens when presented by HLA-DR4, the most important RA-associated HLA type. We used fluorescent, soluble peptide–DR4 complexes (tetramers) to detect synovial CD4+ T cells reactive with CII and HCgp39 in DR4+ patients. The CII-DR4 complex bound in a specific manner to CII peptide-reactive T cell hybridomas, but did not stain a detectable fraction of synovial CD4+ cells. A background percentage of positive cells (<0.2%) was not greater in DR4 (DRB1*0401) patients compared with those without this disease-associated allele. Similar results were obtained with the gp39-DR4 complex for nearly all RA patients. In a small subset of DR4+ patients, however, the percentage of synovial CD4+ cells binding this complex was above background and could not be attributed to nonspecific binding. These studies demonstrate the potential for peptide–MHC class II tetramers to be used to track antigen-specific T cells in human autoimmune diseases. Together, the results also suggest that the major oligoclonal CD4+ T cell expansions present in RA joints are not specific for the dominant CII and HCgp39 determinants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immunodominant, CD8+ cytotoxic T lymphocyte (CTL) response to the HLA-B8-restricted peptide, RAKFKQLL, located in the Epstein–Barr virus immediate-early antigen, BZLF1, is characterized by a diverse T cell receptor (TCR) repertoire. Here, we show that this diversity can be partitioned on the basis of crossreactive cytotoxicity patterns involving the recognition of a self peptide—RSKFRQIV—located in a serine/threonine kinase and a bacterial peptide—RRKYKQII—located in Staphylococcus aureus replication initiation protein. Thus CTL clones that recognized the viral, self, and bacterial peptides expressed a highly restricted αβ TCR phenotype. The CTL clones that recognized viral and self peptides were more oligoclonal, whereas clones that strictly recognized the viral peptide displayed a diverse TCR profile. Interestingly, the self and bacterial peptides equally were substantially less effective than the cognate viral peptide in sensitizing target cell lysis, and also resulted only in a weak reactivation of memory CTLs in limiting dilution assays, whereas the cognate peptide was highly immunogenic. The described crossreactions show that human antiviral, CD8+ CTL responses can be shaped by peptide ligands derived from autoantigens and environmental bacterial antigens, thereby providing a firm structural basis for molecular mimicry involving class I-restricted CTLs in the pathogenesis of autoimmune disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormal expression of major histocompatibility complex (MHC) class I and class II in various tissues is associated with autoimmune disease. Autoimmune responses can be triggered by viral infections or tissue injuries. We show that the ability of a virus or a tissue injury to increase MHC gene expression is duplicated by any fragment of double-stranded (ds) DNA or dsRNA introduced into the cytoplasm of nonimmune cells. Activation is sequence-independent, is induced by ds polynucleotides as small as 25 bp in length, and is not duplicated by single-stranded polynucleotides. In addition to causing abnormal MHC expression, the ds nucleic acids increase the expression of genes necessary for antigen processing and presentation: proteasome proteins (e.g., LMP2), transporters of antigen peptides; invariant chain, HLA-DM, and the costimulatory molecule B7.1. The mechanism is different from and additive to that of γ-interferon (γIFN), i.e., ds polynucleotides increase class I much more than class II, whereas γIFN increases class II more than class I. The ds nucleic acids also induce or activate Stat1, Stat3, mitogen-activated protein kinase, NF-κB, the class II transactivator, RFX5, and the IFN regulatory factor 1 differently from γIFN. CpG residues are not responsible for this effect, and the action of the ds polynucleotides could be shown in a variety of cell types in addition to thyrocytes. We suggest that this phenomenon is a plausible mechanism that might explain how viral infection of tissues or tissue injury triggers autoimmune disease; it is potentially relevant to host immune responses induced during gene therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The γ-herpesviruses, in contrast to the α- and β-herpesviruses, are not known to inhibit antigen presentation to CD8+ cytotoxic T lymphocytes (CTLs) during lytic cycle replication. However, murine γ-herpesvirus 68 causes a chronic lytic infection in CD4+ T cell-deficient mice despite the persistence of a substantial CTL response, suggesting that CTL evasion occurs. Here we show that, distinct from host protein synthesis shutoff, γ-herpesvirus 68 down-regulates surface MHC class I expression on lytically infected fibroblasts and inhibits their recognition by antigen-specific CTLs. The viral K3 gene, encoding a zinc-finger-containing protein, dramatically reduced the half-life of nascent class I molecules and the level of surface MHC class I expression and was by itself sufficient to block antigen presentation. The homologous K3 and K5 genes of the related Kaposi's sarcoma-associated virus also inhibited antigen presentation and decreased cell surface expression of HLA class I antigens. Thus it appears that an immune evasion strategy shared by at least two γ-herpesviruses allows continued lytic infection in the face of strong CTL immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA), the most common autoimmune disease, is associated in families with other autoimmune diseases, including insulin-dependent diabetes mellitus (IDDM). Its genetic component has been suggested by familial aggregation (λs = 5), twin studies, and segregation analysis. HLA, which is the only susceptibility locus known, has been estimated to account for one-third of this component. The aim of this paper was to identify new RA loci. A genome scan was performed with 114 European Caucasian RA sib pairs from 97 nuclear families. Linkage was significant only for HLA (P < 2.5⋅10−5) and nominal for 19 markers in 14 other regions (P < 0.05). Four of the loci implicated in IDDM potentially overlap with these regions: the putative IDDM6, IDDM9, IDDM13, and DXS998 loci. The first two of these candidate regions, defined in the RA genome scan by the markers D18S68-D18S61-D18S469 (18q22–23) and D3S1267 (3q13), respectively, were studied in 194 additional RA sib pairs from 164 nuclear families. Support for linkage to chromosome 3 only was extended significantly (P = 0.002). The analysis of all 261 families provided a linkage evidence of P = 0.001 and suggested an interaction between this putative RA locus and HLA. This locus could account for 16% of the genetic component of RA. Candidate genes include those coding for CD80 and CD86, molecules involved in antigen-specific T cell recognition. In conclusion, this first genome scan in RA Caucasian families revealed 14 candidate regions, one of which was supported further by the study of a second set of families.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding of killer cell Ig-like Receptors (KIR) to their Class I MHC ligands was shown previously to be characterized by extremely rapid association and dissociation rate constants. During experiments to investigate the biochemistry of receptor–ligand binding in more detail, the kinetic parameters of the interaction were observed to alter dramatically in the presence of Zn2+ but not other divalent cations. The basis of this phenomenon is Zn2+-induced multimerization of the KIR molecules as demonstrated by BIAcore, analytical ultracentrifugation, and chemical cross-linking experiments. Zn2+-dependent multimerization of KIR may be critical for formation of the clusters of KIR and HLA-C molecules, the “natural killer (NK) cell immune synapse,” observed at the site of contact between the NK cell and target cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

T cell recognition of autoantigens is critical to progressive immune-mediated destruction of islet cells, which leads to autoimmune diabetes. We identified a naturally presented autoantigen from the human islet antigen glutamic acid decarboxylase, 65-kDa isoform (GAD65), by using a combination of chromatography and mass spectrometry of peptides bound by the type I diabetes (insulin-dependent diabetes mellitus, IDDM)-associated HLA-DR4 molecule. Peptides encompassing this epitope-stimulated GAD65-specific T cells from diabetic patients and a DR4-positive individual at high risk for developing IDDM. T cell responses were antagonized by altered peptide ligands containing single amino acid modifications. This direct identification and manipulation of GAD65 epitope recognition provides an approach toward dissection of the complex CD4+ T cell response in IDDM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The representational difference analysis (RDA) and other subtraction techniques are used to enrich sample-specific sequences by elimination of ubiquitous sequences existing in both the sample of interest (tester) and the subtraction partner (driver). While applying the RDA to genomic DNA of cutaneous lymphoma cells in order to identify tumor relevant alterations, we predominantly isolated repetitive sequences and artificial repeat-mediated fusion products of otherwise independent PCR fragments (PCR hybrids). Since these products severely interfered with the isolation of tester-specific fragments, we developed a considerably more robust and efficient approach, termed ligation-mediated subtraction (Limes). In first applications of Limes, genomic sequences and/or transcripts of genes involved in the regulation of transcription, such as transforming growth factor β stimulated clone 22 related gene (TSC-22R), cell death and cytokine production (caspase-1) or antigen presentation (HLA class II sequences), were found to be completely absent in a cutaneous lymphoma line. On the assumption that mutations in tumor-relevant genes can affect their transcription pattern, a protocol was developed and successfully applied that allows the identification of such sequences. Due to these results, Limes may substitute/supplement other subtraction/comparison techniques such as RDA or DNA microarray techniques in a variety of different research fields.