981 resultados para HLA-A3 mutation
Resumo:
The hyperinsulinism/hyperammonemia (HI/HA) syndrome is a rare autosomal dominant disease manifested by hypoglycemic symptoms triggered by fasting or high-protein meals, and by elevated serum ammonia. HI/HA is the second most common cause of hyperinsulinemic hypoglycemia of infancy, and it is caused by activating mutations in GLUD1, the gene that encodes mitochondrial enzyme glutamate dehydrogenase (GDH). Biochemical evaluation, as well as direct sequencing of exons and exon-intron boundary regions of the GLUD1 gene, were performed in a 6-year old female patient presenting fasting hypoglycemia and hyperammonemia. The patient was found to be heterozygous for one de novo missense mutation (c.1491A>G; p.Il497Met) previously reported in a Japanese patient. Treatment with diazoxide 100 mg/day promoted complete resolution of the hypoglycemic episodes. Arq Bras Endocrinol Metab. 2012;56(8):485-9
Resumo:
There is a high incidence of pituitary-dependent hyperadrenocorticism (PDH) in Poodle dogs, with family members being affected by the disease, suggesting a genetic involvement. Tpit is an obligate transcription factor for the expression of pro-opiomelanocortingene and for corticotroph terminal differentiation. The aim of the present study was to screen the Tpit gene for germline mutations in Poodles with PDH. Fifty Poodle dogs (33 female, 8.71 +/- 2.8 years) with PDH and 50 healthy Poodle dogs (32 females, 9.4241 2.8 years) were studied. Genomic DNA was isolated from peripheral blood, amplified by PCR and submitted to automatic sequence. No mutation in the coding region of Tpit was found, whereas the new single nucleotide polymorphism p.S343G, in heterozygous state, was found in the same frequency in both PDH and control groups. We concluded that Tpit gain-of-function mutations are not involved in the etiology of PDH in Poodle dogs.
Resumo:
The objective of this study was to determine the frequencies of autoantibodies to heterogeneous islet-cell cytoplasmic antigens (ICA), glutamic acid decarboxylase(65) (GAD(65)A), insulinoma-associated antigen-2 (IA-2A) and insulin (IAA)-and human leukocyte antigen (HLA) class II markers (HLA-DR and -DQ) in first degree relatives of heterogeneous Brazilian patients with type I diabetes(T1DM). A major focus of this study was to determine the influence of age, gender, proband characteristics and ancestry on the prevalence of autoantibodies and HLA-DR and -DQ alleles on disease progression and genetic predisposition to T1DM among the first-degree relatives. IAA, ICA, GAD(65)A, IA-2A and HLA- class II alleles were determined in 546 first-degree-relatives, 244 siblings, 55 offspring and 233 parents of 178 Brazilian patients with T1DM. Overall, 8.9% of the relatives were positive for one or more autoantibodies. IAA was the only antibody detected in parents. GAD(65) was the most prevalent antibody in offspring and siblings as compared to parents and it was the sole antibody detected in offspring. Five siblings were positive for the IA-2 antibody. A significant number (62.1%) of siblings had 1 or 2 high risk HLA haplotypes. During a 4-year follow-up study, 5 siblings (expressing HLA-DR3 or -DR4 alleles) and 1 offspring positive for GAD(65)A progressed to diabetes. The data indicated that the GAD(65) and IA-2 antibodies were the strongest predictors of T1DM in our study population. The high risk HLA haplotypes alone were not predictive of progression to overt diabetes.
Resumo:
Defects of mitochondrial protein synthesis are clinically and genetically heterogeneous. We previously described a male infant who was born to consanguineous parents and who presented with severe congenital encephalopathy, peripheral neuropathy, myopathy, and lactic acidosis associated with deficiencies of multiple mitochondrial respiratory-chain enzymes and defective mitochondrial translation. In this work, we have characterized four additional affected family members, performed homozygosity mapping, and identified a homozygous splicing mutation in the splice donor site of exon 2 (c.504+1G>A) of RMND1 (required for meiotic nuclear division-1) in the affected individuals. Fibroblasts from affected individuals expressed two aberrant transcripts and had decreased wild-type mRNA and deficiencies of mitochondrial respiratory-chain enzymes. The RMND1 mutation caused haploinsufficiency that was rescued by overexpression of the wild-type transcript in mutant fibroblasts; this overexpression increased the levels and activities of mitochondrial respiratory-chain proteins. Knockdown of RMND1 via shRNA recapitulated the biochemical defect of the mutant fibroblasts, further supporting a loss-of-function pathomechanism in this disease. RMND1 belongs to the sif2 family, an evolutionary conserved group of proteins that share the DUF155 domain, have unknown function, and have never been associated with human disease. We documented that the protein localizes to mitochondria in mammalian and yeast cells. Further studies are necessary for understanding the function of this protein in mitochondrial protein translation.
Resumo:
Background: Mutations in GH-releasing hormone receptor gene (GHRHR) are emerging as the most common cause of autosomal recessive isolated GH deficiency (IGHD). Objective: To search for GHRHR mutations in patients with familial or sporadic IGHD and to investigate founder effects in recurring mutations. Methods: The coding region of GHRHR was entirely amplified and sequenced from DNA of 18 patients with IGHD (16 unrelated) with topic posterior pituitary lobe on MRI. Haplotypes containing promoter SNPs and microsatellites flanking GHRHR were analyzed in patients with c.57+1G>A (IVS1+1G>A) mutation of our previously published kindred and also a Brazilian patient and 2 previously reported Japanese sisters with c. 1146G>A (p.E382E) mutation. Results: A novel homozygous intronic GHRHR c.752-1G>A (IVS7-1G>A) mutation, predicting loss of the constitutive splice acceptor site, was identified in two siblings with IGHD. A compound heterozygous c.[57+1G>A];[1146G>A] and a heterozygous c.527C>T (p.A176V) were found in two sporadic cases. Haplotype analysis provided evidence for a founder effect for the c.57+1G>A mutation and independent recurrence for the c.1146G>A mutation. Conclusion: We report a novel splice-disrupting mutation in GHRHR in 2 siblings and provide evidence that all c.57+1G>A (IVS1+1G>A) mutant chromosomes have the same haplotype ancestor, indicating the occurrence of a founder effect in Brazilian patients with IGHD. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Baccharis dracunculifolia is a plant native from Brazil, commonly known as 'Alecrim-do-campo' and 'Vassoura' and used in alternative medicine for the treatment of inflammation, hepatic disorders and stomach ulcers. Previous studies reported that artepillin C (ArtC, 3-{4-hydroxy-3,5-di(3-methyl-2-butenyl)phenyl}-2(E)-propenoic acid), is the main compound of interest in the leaves. This study was undertaken to assess the mutagenic effect of the ethyl acetate extract of B. dracunculifolia leaves (Bd-EAE: 11.4-182.8 mu g/plate) and ArtC (0.69-10.99 mu g/plate) by the Ames test using Salmonella typhimurium strains TA98, TA97a, TA100 and TA102, and to compare the protective effects of Bd-EAE and ArtC against the mutagenicity of a variety of direct and indirect acting mutagens such as 4-nitro-O-phenylenediamine, sodium azide, mitomycin C, benzo[a]pyrene, aflatoxin B1, 2-aminoanthracene and 2-aminofluorene. The mutagenicity test showed that Bd-EAE and ArtC did not induce an increase in the number of revertant colonies indicating absence of mutagenic activity. ArtC showed a similar antimutagenic effect to that of Bd-EAE in some strains of S. typhimurium, demonstrating that the antimutagenic activity of Bd-EAE can be partially attributed to ArtC. The present results showed that the protective effect of whole plant extracts is due to the combined and synergistic effects of a complex mixture of phytochemicals, the total activity of which may result in health benefits.
Resumo:
Objectives. The aim of this study was to investigate the HLA-G serum levels in Primary Antiphospholipid Syndrome (PAPS) patients, its impact on clinical and laboratory findings, and heparin treatment. Methods. Forty-four PAPS patients were age and gender matched with 43 controls. HLA-G serum levels were measured using an enzyme-linked immunosorbent assay (ELISA). Results. An increase in soluble HLA-G levels was found in patients compared to controls (3.35 (0 22.9) versus 1.1 (0 14), P = 0.017). There were no significant differences in HLA-G levels between patients with and without obstetric events, arterial thrombosis, venous thrombosis, or stroke. Sixty-six percent of patients were being treated with heparin. Interestingly, patients treated with heparin had higher HLA-G levels than ones who were not treated with this medication (5 (0-22.9) versus 1.8 (0-16) ng/mL, P = 0.038). Furthermore, patients on heparin who experienced obstetric events had a trend to increased HLA-G levels compared to patients who were not on heparin and did not have obstetric events (5.8 (0-22.9) versus 2 (0-15.2) ng/mL, P = 0.05). Conclusion. This is the first study to demonstrate that serum HLA-G levels are increased in APS patients. We also demonstrated that heparin increases HLA-G levels and may increase tolerance towards autoantigens.
Resumo:
Brazilian National Research Council (CNPq/Brazil)
Resumo:
The Brazilian population represents an admixture of native Amerindians, Portuguese settlers and Africans who were brought as slaves during the colonization period that began in the 16th century and was followed by waves of immigrations of Europeans and Asians in the 20th century. The contribution of these different ethnic groups to the constitution of Brazilian populations from different geographic regions is variable and, in addition to environmental factors, might act by determining different allele profiles among Brazilian populations from different regions. We studied polymorphic sites at the 3' untranslated region of the HLA-G gene in individuals from a Northeastern Brazilian region and compared them to our previously published data about a Southeastern Brazilian region, located at a distance of 2589 km. Our results showed that most polymorphic sites present a similar distribution in both populations, except for the lower frequency of the +3003C allele in the Northeastern population compared to the Southeastern population. Although differences in genotypic distribution were only significant for the +3003 locus (P = 0.0201), the diversity of haplotypes was distinct for each population. These results are important for casecontrol studies on the association of human leucocyte antigen-G polymorphism with disease and also in terms of the genetic structure of two distinct Brazilian populations.
Resumo:
A 39-year-old woman with autosomal dominant polycystic kidney disease (ADPKD) presented with acromegaly and a pituitary macroadenoma. There was a family history of this renal disorder. She had undergone surgery for pituitary adenoma 6 years prior. Physical examination disclosed bitemporal hemianopsia and elevation of both basal growth hormone (GH) 106 ng/mL (normal 0-5) and insulin-like growth factor (IGF-1) 811 ng/mL (normal 48-255) blood levels. A magnetic resonance imaging scan disclosed a 3.0 cm sellar and suprasellar mass with both optic chiasm compression and left cavernous sinus invasion. Pathologic, cytogenetic, molecular and in silico analysis was undertaken. Histologic, immunohistochemical and ultrastructural studies of the lesion disclosed a sparsely granulated somatotroph adenoma. Standard chromosome analysis on the blood sample showed no abnormality. Sequence analysis of the coding regions of PKD1 and PKD2 employing DNA from both peripheral leukocytes and the tumor revealed the most common PKD1 mutation, 5014_5015delAG. Analysis of the entire SSTR5 gene disclosed the variant c.142C > A (p.L48M, rs4988483) in the heterozygous state in both blood and tumor, while no pathogenic mutations were noted in the MEN1, AIP, p27Kip1 and SSTR2 genes. To our knowledge, this is the fourth reported case of a GH-producing pituitary adenoma associated with ADPKD, but the first subjected to extensive morphological, ultrastructural, cytogenetic and molecular studies. The physical proximity of the PKD1 and SSTR5 genes on chromosome 16 suggests a causal relationship between ADPKD and somatotroph adenoma.
Resumo:
Congenital gonadotropin-releasing hormone (GnRH) deficiency manifests as absent or incomplete sexual maturation and infertility. Although the disease exhibits marked locus and allelic heterogeneity, with the causal mutations being both rare and private, one causal mutation in the prokineticin receptor, PROKR2 L173R, appears unusually prevalent among GnRH-deficient patients of diverse geographic and ethnic origins. To track the genetic ancestry of PROKR2 L173R, haplotype mapping was performed in 22 unrelated patients with GnRH deficiency carrying L173R and their 30 first-degree relatives. The mutations age was estimated using a haplotype-decay model. Thirteen subjects were informative and in all of them the mutation was present on the same approximate to 123 kb haplotype whose population frequency is 10. Thus, PROKR2 L173R represents a founder mutation whose age is estimated at approximately 9000 years. Inheritance of PROKR2 L173R-associated GnRH deficiency was complex with highly variable penetrance among carriers, influenced by additional mutations in the other PROKR2 allele (recessive inheritance) or another gene (digenicity). The paradoxical identification of an ancient founder mutation that impairs reproduction has intriguing implications for the inheritance mechanisms of PROKR2 L173R-associated GnRH deficiency and for the relevant processes of evolutionary selection, including potential selective advantages of mutation carriers in genes affecting reproduction.
Resumo:
Bannayan-Riley-Ruvalcaba syndrome (BRRS) is a rare autosomal, dominantly-inherited, hamartoma syndrome with distinct phenotypic features. Mutations in the PTEN gene have been identified in PTEN hamartoma tumor syndromes. Our aim was to determine the correlation of phenotype-genotype relationships in a BRRS case. We have evaluated a PTEN mutation in a patient with vascular anomalies and the phenotypic findings of BRRS. We described an 8-year-old girl with the clinical features of BRRS, specifically with vascular anomalies. The mutation in the PTEN gene was identified by DNA sequencing. In our patient, we defined a de novo nonsense R335X (c. 1003 C>T) mutation in exon 8, which results in a premature termination codon. Due to vascular anomalies and hemangioma, the patient's left leg was amputated 1 year after the hemangioma diagnosis. Bannayan - Riley - Ruvalcaba syndrome patients with macrocephaly and vascular anomalies should be considered for PTEN mutation analysis and special medical care.
Resumo:
Centronuclear myopathy (CNM) is a genetically heterogeneous disorder associated with general skeletal muscle weakness, type I fiber predominance and atrophy, and abnormally centralized nuclei. Autosomal dominant CNM is due to mutations in the large GTPase dynamin 2 (DNM2), a mechanochemical enzyme regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort harbors nine known and four new mutations, including the first splice-site mutation. Genotype-phenotype correlation hypotheses are drawn from the published and new data, and allow an efficient screening strategy for molecular diagnosis. In addition to CNM, dissimilar DNM2 mutations are associated with Charcot-Marie-Tooth (CMT) peripheral neuropathy (CMTD1B and CMT2M), suggesting a tissue-specific impact of the mutations. In this study, we discuss the possible clinical overlap of CNM and CMT, and the biological significance of the respective mutations based on the known functions of dynamin 2 and its protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT. Hum Mutat 33: 949-959, 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
We report a case of adrenal hypoplasia congenita (AHC) and hypogonadotropic hypogonadism (HH) due to a novel DAX1 mutation. A 19-month-old boy with hyperpigmentation and failure to thrive came to our service for investigation. Three brothers of the patient had died due to adrenal failure, and a maternal cousin had adrenal insufficiency. Adrenoleukodystrophy was excluded. MRI showed normal pituitary and hypothalamus. Plasma hormone evaluation revealed high ACTH (up to 2,790 pg/mL), and low levels of androstenedione, DHEA-S, 11-deoxycortisol, and cortisol. At 14 years of age the patient was still prepubescent, his weight was 43.6 kg (SDS: -0.87) and his height was 161 cm (SDS: -0.36), with normal body proportions. In the GnRH test, basal and maximum values of LH and FSH were respectively 0.6/2.1 and < 1.0/< 1.0 U/L. Molecular investigation identified a novel mutation that consists of a deletion of codon 372 (AAC; asparagine) in exon 1 of DAX1. This mutation was not found in a study of 200 alleles from normal individuals. Prediction site analysis indicated that this alteration, located in the DAX1 ligand-binding domain, may damage DAX1 protein. We hypothesize that the novel (p.Asp372del) DAX1 mutation might be able to cause a disruption of DAX1 function, and is probably involved in the development of AHC and HH in this patient. Arq Bras Endocrinol Metab. 2012;56(8):496-500
Resumo:
Background More than 50 mutations in the UBE3A gene (E6-AP ubiquitin protein ligase gene) have been found in Angelman syndrome patients with no deletion, no uniparental disomy, and no imprinting defect. Case Presentation We here describe a novel UBE3A frameshift mutation in two siblings who have inherited it from their asymptomatic mother. Despite carrying the same UBE3A mutation, the proband shows a more severe phenotype whereas his sister shows a milder phenotype presenting the typical AS features. Conclusions We hypothesized that the mutation Leu125Stop causes both severe and milder phenotypes. Potential mechanisms include: i) maybe the proband has an additional problem (genetic or environmental) besides the UBE3A mutation; ii) since the two siblings have different fathers, the UBE3A mutation is interacting with a different genetic variant in the proband that, by itself, does not cause problems but in combination with the UBE3A mutation causes the severe phenotype; iii) this UBE3A mutation alone can cause either typical AS or the severe clinical picture seen in the proband.