951 resultados para HF Propagation
Resumo:
Applications such as neuroscience, telecommunication, online social networking, transport and retail trading give rise to connectivity patterns that change over time. In this work, we address the resulting need for network models and computational algorithms that deal with dynamic links. We introduce a new class of evolving range-dependent random graphs that gives a tractable framework for modelling and simulation. We develop a spectral algorithm for calibrating a set of edge ranges from a sequence of network snapshots and give a proof of principle illustration on some neuroscience data. We also show how the model can be used computationally and analytically to investigate the scenario where an evolutionary process, such as an epidemic, takes place on an evolving network. This allows us to study the cumulative effect of two distinct types of dynamics.
Resumo:
We have compared properties of roots from different lines (genotypes) of tobacco raised either in tissue culture or grown from seed. The different lines included unmodified plants and plants modified to express reduced activity of the enzyme cinnamoyl-CoA reductase, which has a pivotal role in lignin biosynthesis. The size and structure of the rhizosphere microbial community, characterized by adenosine triphosphate and phospholipid fatty acid analyses, were related to root chemistry (specifically the soluble carbohydrate concentration) and decomposition rate of the roots. The root material from unmodified plants decomposed faster following tissue culture compared with seed culture, and the faster decomposing material had significantly higher soluble carbohydrate concentrations. These observations are linked to the larger microbial biomass and greater diversity of the rhizosphere communities of tissue culture propagated plants.
Resumo:
We have compared properties of roots from different lines (genotypes) of tobacco raised either in tissue culture or grown from seed. The different lines included unmodified plants and plants modified to express reduced activity of the enzyme cinnamoyl-CoA reductase, which has a pivotal role in lignin biosynthesis. The size and structure of the rhizosphere microbial community, characterized by adenosine triphosphate and phospholipid fatty acid analyses, were related to root chemistry (specifically the soluble carbohydrate concentration) and decomposition rate of the roots. The root material from unmodified plants decomposed faster following tissue culture compared with seed culture, and the faster decomposing material had significantly higher soluble carbohydrate concentrations. These observations are linked to the larger microbial biomass and greater diversity of the rhizosphere communities of tissue culture propagated plants.
Resumo:
Numerical simulations of magnetic clouds (MCs) propagating through a structured solar wind suggest that MC-associated magnetic flux ropes are highly distorted by inhomogeneities in the ambient medium. In particular, a solar wind configuration of fast wind from high latitudes and slow wind at low latitudes, common at periods close to solar minimum, should distort the cross section of magnetic clouds into concave-outward structures. This phenomenon has been reported in observations of shock front orientations, but not in the body of magnetic clouds. In this study an analytical magnetic cloud model based upon a kinematically distorted flux rope is modified to simulate propagation through a structured medium. This new model is then used to identify specific time series signatures of the resulting concave-outward flux ropes. In situ observations of three well studied magnetic clouds are examined with comparison to the model, but the expected concave-outward signatures are not present. Indeed, the observations are better described by the convex-outward flux rope model. This may be due to a sharp latitudinal transition from fast to slow wind, resulting in a globally concave-outward flux rope, but with convex-outward signatures on a local scale.
Resumo:
The propagation velocity and propagation mechanism for vortices on a β plane are determined for a reduced-gravity model by integrating the momentum equations over the β plane. Isolated vortices, vortices in a background current, and initial vortex propagation from rest are studied. The propagation mechanism for isolated anticyclones as well as cyclones, which has been lacking up to now, is presented. It is shown that, to first order, the vortex moves to generate a Coriolis force on the mass anomaly of the vortex to compensate for the force on the vortex due to the variation of the Coriolis parameter. Only the mass anomaly of the vortex is of importance, because the Coriolis force due to the motion of the bulk of the layer moving with the vortex is almost fully compensated by the Coriolis force on the motion of the exterior flow. Because the mass anomaly of a cyclone is negative the force and acceleration have opposite sign. The role of dipolar structures in steadily moving vortices is discussed, and it is shown that their overall structure is fixed by the steady westward motion of the mass anomaly. Furthermore, it is shown that reduced-gravity vortices are not advected with a background flow. The reason for this behavior is that the background flow changes the ambient vorticity gradient such that the vortex obtains an extra self-propagation term that exactly cancels the advection by the background flow. Last, it is shown that a vortex initially at rest will accelerate equatorward first, after which a westward motion is generated. This result is independent of the sign of the vortex.
Resumo:
Recent coordinated observations of interplanetary scintillation (IPS) from the EISCAT, MERLIN, and STELab, and stereoscopic white-light imaging from the two heliospheric imagers (HIs) onboard the twin STEREO spacecraft are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun–Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.
Resumo:
Typically, algorithms for generating stereo disparity maps have been developed to minimise the energy equation of a single image. This paper proposes a method for implementing cross validation in a belief propagation optimisation. When tested using the Middlebury online stereo evaluation, the cross validation improves upon the results of standard belief propagation. Furthermore, it has been shown that regions of homogeneous colour within the images can be used for enforcing the so-called "Segment Constraint". Developing from this, Segment Support is introduced to boost belief between pixels of the same image region and improve propagation into textureless regions.
Resumo:
We provide a system identification framework for the analysis of THz-transient data. The subspace identification algorithm for both deterministic and stochastic systems is used to model the time-domain responses of structures under broadband excitation. Structures with additional time delays can be modelled within the state-space framework using additional state variables. We compare the numerical stability of the commonly used least-squares ARX models to that of the subspace N4SID algorithm by using examples of fourth-order and eighth-order systems under pulse and chirp excitation conditions. These models correspond to structures having two and four modes simultaneously propagating respectively. We show that chirp excitation combined with the subspace identification algorithm can provide a better identification of the underlying mode dynamics than the ARX model does as the complexity of the system increases. The use of an identified state-space model for mode demixing, upon transformation to a decoupled realization form is illustrated. Applications of state-space models and the N4SID algorithm to THz transient spectroscopy as well as to optical systems are highlighted.
Resumo:
A quasi-optical technique for characterizing micromachined waveguides is demonstrated with wideband time-resolved terahertz spectroscopy. A transfer-function representation is adopted for the description of the relation between the signals in the input and output port of the waveguides. The time-domain responses were discretized, and the waveguide transfer function was obtained through a parametric approach in the z domain after describing the system with an autoregressive with exogenous input model. The a priori assumption of the number of modes propagating in the structure was inferred from comparisons of the theoretical with the measured characteristic impedance as well as with parsimony arguments. Measurements for a precision WR-8 waveguide-adjustable short as well as for G-band reduced-height micromachined waveguides are presented. (C) 2003 Optical Society of America.
Resumo:
The THz water content index of a sample is defined and advantages in using such metric in estimating a sample's relative water content are discussed. The errors from reflectance measurements performed at two different THz frequencies using a quasi-optical null-balance reflectometer are propagated to the errors in estimating the sample water content index.
Resumo:
We describe and implement a fully discrete spectral method for the numerical solution of a class of non-linear, dispersive systems of Boussinesq type, modelling two-way propagation of long water waves of small amplitude in a channel. For three particular systems, we investigate properties of the numerically computed solutions; in particular we study the generation and interaction of approximate solitary waves.