886 resultados para Grassland ecology


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been limited recent advances in understanding of what influences uptake of innovations despite the current international focus on smallholder agriculture as a means of achieving food security and rural development. This paper provides a rigorous study of factors influencing adoption by smallholders in central Mexico and builds on findings to identify a broad approach to significantly improve research on and understanding of factors influencing adoption by smallholders in developing countries. Small-scale dairy systems play an important role in providing income, employment and nutrition in the highlands of central Mexico. A wide variety of practices and technologies have been promoted by the government public services to increase milk production and economic efficiency, but there have been very low levels of uptake of most innovations, with the exception of improving grassland through introduction of grass varieties together with management practices. A detailed study was conducted with 80 farmers who are already engaged with the use of this innovation to better understand the process of adoption and identify socioeconomic and farm variables, cognitive (beliefs), and social–psychological (social norms) factors associated with farmers' use of improved grassland. The Theory of Reasoned Action (TRA) was used as a theoretical framework and Spearman Rank Order correlation was conducted to analyse the data. Most farmers (92.5%) revealed strong intention to continue to use improved grassland (which requires active management and investment of resources) for the next 12 months; whereas 7.5% of farmers were undecided and showed weak intention, which was associated with farmers whose main income was from non-farm activities as well as with farmers who had only recently started using improved grassland. Despite farmers' experience of using improved grassland (mean of 18 years) farmers' intentions to continue to adopt it was influenced almost as much by salient referents (mainly male relatives) as by their own attitudes. The hitherto unnoticed longevity of the role social referents play in adoption decisions is an important finding and has implications for further research and for the design of extension approaches. The study demonstrates the value and importance of using TRA or TPB approaches to understand social cognitive (beliefs) and social–psychological (social norms) factors in the study of adoption. However, other factors influencing adoption processes need to be included to provide fuller understanding. An approach that would enable this, and the development of more generalisable findings than from location specific case studies, and contribute to broader conceptualisation, is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although grasslands are crucial habitats for European butterflies, large-scale declines in quality and area have devastated many species. Grassland restoration can contribute to the recovery of butterfly populations, although there is a paucity of information on the long-term effects of management. Using eight UK data sets (9-21 years), we investigate changes in restoration success for (1) arable reversion sites, were grassland was established on bare ground using seed mixtures, and (2) grassland enhancement sites, where degraded grasslands are restored by scrub removal followed by the re-instigation of cutting/grazing. We also assessed the importance of individual butterfly traits and ecological characteristics in determining colonisation times. Consistent increases in restoration success over time were seen for arable reversion sites, with the most rapid rates of increase in restoration success seen over the first 10 years. For grasslands enhancement there were no consistent increases in restoration success over time. Butterfly colonisation times were fastest for species with widespread host plants or where host plants established well during restoration. Low mobility butterfly species took longer to colonise. We show that arable reversion is an effective tool for the management of butterfly communities. We suggest that as restoration takes time to achieve, its use as a mitigation tool against future environmental change (i.e. by decreasing isolation in fragmented landscapes) needs to take into account such time lags.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes such as artificial drainage and application of fertilizer. Models aiming to estimate greenhouse gas release from peatlands require an accurate estimate of the diffusion coefficient of gas transport through soil (Ds). The availability of specific measurements for peatland soils is currently limited. This study measured Ds for a peat soil with an overlying clay horizon and compared values with those from widely available models. The Ds value of a sandy loam reference soil was measured for comparison. Using the Currie (1960) method, Ds was measured between an air-filled porosity (ϵ) range of 0 and 0.5 cm3 cm−3. Values of Ds for the peat cores ranged between 3.2 × 10−4 and 4.4 × 10−3 m2 hour−1, for loamy clay cores between 0 and 4.7 × 10−3 m2 hour−1 and for the sandy reference soil they were between 5.4 × 10−4 and 3.4 × 10−3 m2 hour−1. The agreement of measured and modelled values of relative diffusivity (Ds/D0, with D0 the diffusion coefficient through free air) varied with soil type; however, the Campbell (1985) model provided the best replication of measured values for all soils. This research therefore suggests that the use of the Campbell model in the absence of accurately measured Ds and porosity values for a study soil would be appropriate. Future research into methods to reduce shrinkage of peat during measurement and therefore allow measurement of Ds for a greater range of ϵ would be beneficial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emerging discipline of urban ecology is shifting focus from ecological processes embedded within cities to integrative studies of large urban areas as biophysical-social complexes. Yet this discipline lacks a theory. Results from the Baltimore Ecosystem Study, part of the Long Term Ecological Research Network, expose new assumptions and test existing assumptions about urban ecosystems. The findings suggest a broader range of structural and functional relationships than is often assumed for urban ecological systems. We address the relationships between social status and awareness of environmental problems, and between race and environmental hazard. We present patterns of species diversity, riparian function, and stream nitrate loading. In addition, we probe the suitability of land-use models, the diversity of soils, and the potential for urban carbon sequestration. Finally, we illustrate lags between social patterns and vegetation, the biogeochemistry of lawns, ecosystem nutrient retention, and social-biophysical feedbacks. These results suggest a framework for a theory of urban ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grassland ecosystems comprise a major portion of the earth’s terrestrial surface, ranging from high-input cultivated monocultures or simple species mixtures to relatively unmanaged but dynamic systems. Plant pathogens are a component of these systems with their impact dependent on many interacting factors, including grassland species population dynamics and community composition, the topics covered in this paper. Plant pathogens are affected by these interactions and also act reciprocally by modifying their nature. We review these features of disease in grasslands and then introduce the 150-year long-term Park Grass Experiment (PGE) at Rothamsted Research in the UK. We then consider in detail two plant-pathogen systems present in the PGE, Tragopogon pratensis-Puccinia hysterium and Holcus lanata-Puccinia coronata. These two systems have very different life history characteristics: the first, a biennial member of the Asteraceae infected by its host-specific, systemic rust; the second, a perennial grass infected by a host-non-specific rust. We illustrate how observational, experimental and modelling studies can contribute to a better understanding of population dynamics, competitive interactions and evolutionary outcomes. With Tragopogon pratensis-Puccinia hysterium, characterised as an “outbreak” species in the PGE, we show that pathogen-induced mortality is unlikely to be involved in host population regulation; and that the presence of even a short-lived seed-bank can affect the qualitative outcomes of the host-pathogen dynamics. With Holcus lanata-Puccinia coronata, we show how nutrient conditions can affect adaptation in terms of host defence mechanisms, and that co-existence of competing species affected by a common generalist pathogen is unlikely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European grassland-based livestock production systems are challenged to produce more milk and meat to meet increasing world demand and to achieve this by using fewer resources. Legumes offer great potential for coping with such requests. They have numerous features that can act together at different stages in the soil-plant-animal-atmosphere system and these are most effective in mixed swards with a legume abundance of 30-50%. The resulting benefits are a reduced dependency on fossil energy and industrial N fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication due to bioactive secondary metabolites. In addition, legumes may offer an option for adapting to higher atmospheric CO2 concentrations and to climate change. Legumes generate these benefits at the level of the managed land area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research in order to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland-livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can only be expected that legumes will become more important in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grazing systems represent a substantial percentage of the global anthropogenic flux of nitrous oxide (N2O) as a result of nitrogen addition to the soil. The pool of available carbon that is added to the soil from livestock excreta also provides substrate for the production of carbon dioxide (CO2) and methane (CH4) by soil microorganisms. A study into the production and emission of CO2, CH4 and N2O from cattle urine amended pasture was carried out on the Somerset Levels and Moors, UK over a three-month period. Urine-amended plots (50 g N m−2) were compared to control plots to which only water (12 mg N m−2) was applied. CO2 emission peaked at 5200 mg CO2 m−2 d−1 directly after application. CH4 flux decreased to −2000 μg CH4 m−2 d−1 two days after application; however, net CH4 flux was positive from urine treated plots and negative from control plots. N2O emission peaked at 88 mg N2O m−2 d−1 12 days after application. Subsurface CH4 and N2O concentrations were higher in the urine treated plots than the controls. There was no effect of treatment on subsurface CO2 concentrations. Subsurface N2O peaked at 500 ppm 12 days after and 1200 ppm 56 days after application. Subsurface NO3− concentration peaked at approximately 300 mg N kg dry soil−1 12 days after application. Results indicate that denitrification is the key driver for N2O release in peatlands and that this production is strongly related to rainfall events and water-table movement. N2O production at depth continued long after emissions were detected at the surface. Further understanding of the interaction between subsurface gas concentrations, surface emissions and soil hydrological conditions is required to successfully predict greenhouse gas production and emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European grassland-based livestock production systems face the challenge of producing more meat and milk to meet increasing world demands and to achieve this using fewer resources. Legumes offer great potential for achieving these objectives. They have numerous features that can act together at different stages in the soil–plant–animal–atmosphere system, and these are most effective in mixed swards with a legume proportion of 30–50%. The resulting benefits include reduced dependence on fossil energy and industrial N-fertilizer, lower quantities of harmful emissions to the environment (greenhouse gases and nitrate), lower production costs, higher productivity and increased protein self-sufficiency. Some legume species offer opportunities for improving animal health with less medication, due to the presence of bioactive secondary metabolites. In addition, legumes may offer an adaptation option to rising atmospheric CO2 concentrations and climate change. Legumes generate these benefits at the level of the managed land-area unit and also at the level of the final product unit. However, legumes suffer from some limitations, and suggestions are made for future research to exploit more fully the opportunities that legumes can offer. In conclusion, the development of legume-based grassland–livestock systems undoubtedly constitutes one of the pillars for more sustainable and competitive ruminant production systems, and it can be expected that forage legumes will become more important in the future.