787 resultados para Gradient-based approaches
Resumo:
Successful repair of wounds and tissues remains a major healthcare and biomedical challenge in the 21st Century. In particular, chronic wounds often lead to loss of functional ability, increased pain and decreased quality of life, and can be a burden on carers and health-system resources. Advanced healing therapies employing biological dressings, skin substitutes, growth factor-based therapies and synthetic a cellular matrices, all of which aim to correct irregular and dysfunctional cellular pathways present in chronic wounds, are becoming more popular. This review focuses on recent advances in biologically inspired devices for would healing and includes a commentary on the challenges facing the regulatory governance of such products.
Resumo:
The detection of voice activity is a challenging problem, especially when the level of acoustic noise is high. Most current approaches only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to overcome this is to use the visual modality. The current state-of-the-art visual feature extraction technique is one that uses a cascade of visual features (i.e. 2D-DCT, feature mean normalisation, interstep LDA). In this paper, we investigate the effectiveness of this technique for the task of visual voice activity detection (VAD), and analyse each stage of the cascade and quantify the relative improvement in performance gained by each successive stage. The experiments were conducted on the CUAVE database and our results highlight that the dynamics of the visual modality can be used to good effect to improve visual voice activity detection performance.
Resumo:
Visual servoing has been a viable method of robot manipulator control for more than a decade. Initial developments involved positionbased visual servoing (PBVS), in which the control signal exists in Cartesian space. The younger method, image-based visual servoing (IBVS), has seen considerable development in recent years. PBVS and IBVS offer tradeoffs in performance, and neither can solve all tasks that may confront a robot. In response to these issues, several methods have been devised that partition the control scheme, allowing some motions to be performed in the manner of a PBVS system, while the remaining motions are performed using an IBVS approach. To date, there has been little research that explores the relative strengths and weaknesses of these methods. In this paper we present such an evaluation. We have chosen three recent visual servo approaches for evaluation in addition to the traditional PBVS and IBVS approaches. We posit a set of performance metrics that measure quantitatively the performance of a visual servo controller for a specific task. We then evaluate each of the candidate visual servo methods for four canonical tasks with simulations and with experiments in a robotic work cell.
Resumo:
Introduction - The planning for healthy cities faces significant challenges due to lack of effective information, systems and a framework to organise that information. Such a framework is critical in order to make accessible and informed decisions for planning healthy cities. The challenges for planning healthy cities have been magnified by the rise of the healthy cities movement, as a result of which, there have been more frequent calls for localised, collaborative and knowledge-based decisions. Some studies have suggested that the use of a ‘knowledge-based’ approach to planning will enhance the accuracy and quality decision-making by improving the availability of data and information for health service planners and may also lead to increased collaboration between stakeholders and the community. A knowledge-based or evidence-based approach to decision-making can provide an ‘out-of-the-box’ thinking through the use of technology during decision-making processes. Minimal research has been conducted in this area to date, especially in terms of evaluating the impact of adopting knowledge-based approach on stakeholders, policy-makers and decision-makers within health planning initiatives. Purpose – The purpose of the paper is to present an integrated method that has been developed to facilitate a knowledge-based decision-making process to assist health planning Methodology – Specifically, the paper describes the participatory process that has been adopted to develop an online Geographic Information System (GIS)-based Decision Support System (DSS) for health planners. Value – Conceptually, it is an application of Healthy Cities and Knowledge Cities approaches which are linked together. Specifically, it is a unique settings-based initiative designed to plan for and improve the health capacity of Logan-Beaudesert area, Australia. This setting-based initiative is named as the Logan-Beaudesert Health Coalition (LBHC). Practical implications - The paper outlines the application of a knowledge-based approach to the development of a healthy city. Also, it focuses on the need for widespread use of this approach as a tool for enhancing community-based health coalition decision making processes.
Resumo:
In this thesis, the relationship between air pollution and human health has been investigated utilising Geographic Information System (GIS) as an analysis tool. The research focused on how vehicular air pollution affects human health. The main objective of this study was to analyse the spatial variability of pollutants, taking Brisbane City in Australia as a case study, by the identification of the areas of high concentration of air pollutants and their relationship with the numbers of death caused by air pollutants. A correlation test was performed to establish the relationship between air pollution, number of deaths from respiratory disease, and total distance travelled by road vehicles in Brisbane. GIS was utilized to investigate the spatial distribution of the air pollutants. The main finding of this research is the comparison between spatial and non-spatial analysis approaches, which indicated that correlation analysis and simple buffer analysis of GIS using the average levels of air pollutants from a single monitoring station or by group of few monitoring stations is a relatively simple method for assessing the health effects of air pollution. There was a significant positive correlation between variable under consideration, and the research shows a decreasing trend of concentration of nitrogen dioxide at the Eagle Farm and Springwood sites and an increasing trend at CBD site. Statistical analysis shows that there exists a positive relationship between the level of emission and number of deaths, though the impact is not uniform as certain sections of the population are more vulnerable to exposure. Further statistical tests found that the elderly people of over 75 years age and children between 0-15 years of age are the more vulnerable people exposed to air pollution. A non-spatial approach alone may be insufficient for an appropriate evaluation of the impact of air pollutant variables and their inter-relationships. It is important to evaluate the spatial features of air pollutants before modeling the air pollution-health relationships.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
This thesis aimed to investigate the way in which distance runners modulate their speed in an effort to understand the key processes and determinants of speed selection when encountering hills in natural outdoor environments. One factor which has limited the expansion of knowledge in this area has been a reliance on the motorized treadmill which constrains runners to constant speeds and gradients and only linear paths. Conversely, limits in the portability or storage capacity of available technology have restricted field research to brief durations and level courses. Therefore another aim of this thesis was to evaluate the capacity of lightweight, portable technology to measure running speed in outdoor undulating terrain. The first study of this thesis assessed the validity of a non-differential GPS to measure speed, displacement and position during human locomotion. Three healthy participants walked and ran over straight and curved courses for 59 and 34 trials respectively. A non-differential GPS receiver provided speed data by Doppler Shift and change in GPS position over time, which were compared with actual speeds determined by chronometry. Displacement data from the GPS were compared with a surveyed 100m section, while static positions were collected for 1 hour and compared with the known geodetic point. GPS speed values on the straight course were found to be closely correlated with actual speeds (Doppler shift: r = 0.9994, p < 0.001, Δ GPS position/time: r = 0.9984, p < 0.001). Actual speed errors were lowest using the Doppler shift method (90.8% of values within ± 0.1 m.sec -1). Speed was slightly underestimated on a curved path, though still highly correlated with actual speed (Doppler shift: r = 0.9985, p < 0.001, Δ GPS distance/time: r = 0.9973, p < 0.001). Distance measured by GPS was 100.46 ± 0.49m, while 86.5% of static points were within 1.5m of the actual geodetic point (mean error: 1.08 ± 0.34m, range 0.69-2.10m). Non-differential GPS demonstrated a highly accurate estimation of speed across a wide range of human locomotion velocities using only the raw signal data with a minimal decrease in accuracy around bends. This high level of resolution was matched by accurate displacement and position data. Coupled with reduced size, cost and ease of use, the use of a non-differential receiver offers a valid alternative to differential GPS in the study of overground locomotion. The second study of this dissertation examined speed regulation during overground running on a hilly course. Following an initial laboratory session to calculate physiological thresholds (VO2 max and ventilatory thresholds), eight experienced long distance runners completed a self- paced time trial over three laps of an outdoor course involving uphill, downhill and level sections. A portable gas analyser, GPS receiver and activity monitor were used to collect physiological, speed and stride frequency data. Participants ran 23% slower on uphills and 13.8% faster on downhills compared with level sections. Speeds on level sections were significantly different for 78.4 ± 7.0 seconds following an uphill and 23.6 ± 2.2 seconds following a downhill. Speed changes were primarily regulated by stride length which was 20.5% shorter uphill and 16.2% longer downhill, while stride frequency was relatively stable. Oxygen consumption averaged 100.4% of runner’s individual ventilatory thresholds on uphills, 78.9% on downhills and 89.3% on level sections. Group level speed was highly predicted using a modified gradient factor (r2 = 0.89). Individuals adopted distinct pacing strategies, both across laps and as a function of gradient. Speed was best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption (VO2) limited runner’s speeds only on uphill sections, and was maintained in line with individual ventilatory thresholds. Running speed showed larger individual variation on downhill sections, while speed on the level was systematically influenced by the preceding gradient. Runners who varied their pace more as a function of gradient showed a more consistent level of oxygen consumption. These results suggest that optimising time on the level sections after hills offers the greatest potential to minimise overall time when running over undulating terrain. The third study of this thesis investigated the effect of implementing an individualised pacing strategy on running performance over an undulating course. Six trained distance runners completed three trials involving four laps (9968m) of an outdoor course involving uphill, downhill and level sections. The initial trial was self-paced in the absence of any temporal feedback. For the second and third field trials, runners were paced for the first three laps (7476m) according to two different regimes (Intervention or Control) by matching desired goal times for subsections within each gradient. The fourth lap (2492m) was completed without pacing. Goals for the Intervention trial were based on findings from study two using a modified gradient factor and elapsed distance to predict the time for each section. To maintain the same overall time across all paced conditions, times were proportionately adjusted according to split times from the self-paced trial. The alternative pacing strategy (Control) used the original split times from this initial trial. Five of the six runners increased their range of uphill to downhill speeds on the Intervention trial by more than 30%, but this was unsuccessful in achieving a more consistent level of oxygen consumption with only one runner showing a change of more than 10%. Group level adherence to the Intervention strategy was lowest on downhill sections. Three runners successfully adhered to the Intervention pacing strategy which was gauged by a low Root Mean Square error across subsections and gradients. Of these three, the two who had the largest change in uphill-downhill speeds ran their fastest overall time. This suggests that for some runners the strategy of varying speeds systematically to account for gradients and transitions may benefit race performances on courses involving hills. In summary, a non – differential receiver was found to offer highly accurate measures of speed, distance and position across the range of human locomotion speeds. Self-selected speed was found to be best predicted using a weighted factor to account for prior and current gradients. Oxygen consumption limited runner’s speeds only on uphills, speed on the level was systematically influenced by preceding gradients, while there was a much larger individual variation on downhill sections. Individuals were found to adopt distinct but unrelated pacing strategies as a function of durations and gradients, while runners who varied pace more as a function of gradient showed a more consistent level of oxygen consumption. Finally, the implementation of an individualised pacing strategy to account for gradients and transitions greatly increased runners’ range of uphill-downhill speeds and was able to improve performance in some runners. The efficiency of various gradient-speed trade- offs and the factors limiting faster downhill speeds will however require further investigation to further improve the effectiveness of the suggested strategy.
Resumo:
Stereo vision is a method of depth perception, in which depth information is inferred from two (or more) images of a scene, taken from different perspectives. Practical applications for stereo vision include aerial photogrammetry, autonomous vehicle guidance, robotics and industrial automation. The initial motivation behind this work was to produce a stereo vision sensor for mining automation applications. For such applications, the input stereo images would consist of close range scenes of rocks. A fundamental problem faced by matching algorithms is the matching or correspondence problem. This problem involves locating corresponding points or features in two images. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This work implemented a number of areabased matching algorithms to assess their suitability for this application. Area-based techniques were investigated because of their potential to yield dense depth maps, their amenability to fast hardware implementation, and their suitability to textured scenes such as rocks. In addition, two non-parametric transforms, the rank and census, were also compared. Both the rank and the census transforms were found to result in improved reliability of matching in the presence of radiometric distortion - significant since radiometric distortion is a problem which commonly arises in practice. In addition, they have low computational complexity, making them amenable to fast hardware implementation. Therefore, it was decided that matching algorithms using these transforms would be the subject of the remainder of the thesis. An analytic expression for the process of matching using the rank transform was derived from first principles. This work resulted in a number of important contributions. Firstly, the derivation process resulted in one constraint which must be satisfied for a correct match. This was termed the rank constraint. The theoretical derivation of this constraint is in contrast to the existing matching constraints which have little theoretical basis. Experimental work with actual and contrived stereo pairs has shown that the new constraint is capable of resolving ambiguous matches, thereby improving match reliability. Secondly, a novel matching algorithm incorporating the rank constraint has been proposed. This algorithm was tested using a number of stereo pairs. In all cases, the modified algorithm consistently resulted in an increased proportion of correct matches. Finally, the rank constraint was used to devise a new method for identifying regions of an image where the rank transform, and hence matching, are more susceptible to noise. The rank constraint was also incorporated into a new hybrid matching algorithm, where it was combined a number of other ideas. These included the use of an image pyramid for match prediction, and a method of edge localisation to improve match accuracy in the vicinity of edges. Experimental results obtained from the new algorithm showed that the algorithm is able to remove a large proportion of invalid matches, and improve match accuracy.
Resumo:
The studies in the thesis were derived from a program of research focused on centre-based child care in Australia. The studies constituted an ecological analysis as they examined proximal and distal factors which have the potential to affect children's developmental opportunities (Bronfenbrenner, 1979). The project was conducted in thirty-two child care centres located in south-east Queensland. Participants in the research included staff members at the centres, families using the centres and their children. The first study described the personal and professional characteristics of one hundred and forty-four child care workers, as well as their job satisfaction and job commitment. Factors impinging on the stability of care afforded to children were examined, specifically child care workers' intentions to leave their current position and actual staff turnover at a twelve month follow-up. This is an ecosystem analysis (Bronfenbrenner & Crouter, 1983), as it examined the world of work for carers; a setting not directly involving the developing child, but which has implications for children's experiences. Staff job satisfaction was focused on working with children and other adults, including parents and colleagues. Involvement with children was reported as being the most rewarding aspect of the work. This intrinsic satisfaction was enough to sustain caregivers' efforts to maintain their employment in child care programs. It was found that, while improving working conditions may help to reduce turnover, it is likely that moderate turnover rates will remain as child care staff work in relatively small centres and they leave in order to improve career prospects. Departure from a child care job appeared to be as much about improving career opportunities or changing personal circumstances, as it was about poor wages and working conditions. In the second study, factors that influence maternal satisfaction with child care arrangements were examined. The focus included examination of the nature and qualities of parental interaction with staff. This was a mesosystem analysis (Bronfenbrenner & Crouter, 1983), as it considered the links between family and child care settings. Two hundred and twenty-two questionnaires were returned from mothers whose children were enrolled in the participating centres. It was found that maternal satisfaction with child care encompassed the domains of child-centred and parent-centred satisfaction. The nature and range of responses in the quantitative and qualitative data indicated that these parents were genuinely satisfied with their children's care. In the prediction of maternal satisfaction with child care, single parents, mothers with high role satisfaction, and mothers who were satisfied with the frequency of staff contact and degree of supportive communication had higher levels of satisfaction with their child care arrangements. The third study described the structural and process variations within child care programs and examined program differences for compliance with regulations and differences by profit status of the centre, as a microsystem analysis (Bronfenbrenner, 1979). Observations were made in eighty-three programs which served children from two to five years. The results of the study affirmed beliefs that nonprofit centres are superior in the quality of care provided, although this was not to a level which meant that the care in for-profit centres was inadequate. Regulation of structural features of child care programs, per se, did not guarantee higher quality child care as measured by global or process indicators. The final study represented an integration of a range of influences in child care and family settings which may impact on development. Features of child care programs which predict children's social and cognitive development, while taking into account child and family characteristics, were identified. Results were consistent with other research findings which show that child and family characteristics and child care quality predict children's development. Child care quality was more important to the prediction of social development, while family factors appeared to be more predictive of cognitive/language development. An influential variable predictive of development was the period of time which the child had been in the centre. This highlighted the importance of the stability of child care arrangements. Child care quality features which had most influence were global ratings of the qualities of the program environment. However, results need to be interpreted cautiously as the explained variance in the predictive models developed was low. The results of these studies are discussed in terms of the implications for practice and future research. Considerations for an expanded view of ecological approaches to child care research are outlined. Issues discussed include the need to generate child care research which is relevant to social policy development, the implications of market driven policies for child care services, professionalism and professionalisation of child care work, and the need to reconceptualise child care research when the goal is to develop greater theoretical understanding about child care environments and developmental processes.
Resumo:
This research has established, through ultrasound, near infrared spectroscopy and biomechanics experiments, parameters and parametric relationships that can form the framework for quantifying the integrity of the articular cartilage-on-bone laminate, and objectively distinguish between normal/healthy and abnormal/degenerated joint tissue, with a focus on articular cartilage. This has been achieved by: 1. using traditional experimental methods to produce new parameters for cartilage assessment; 2. using novel methodologies to develop new parameters; and 3. investigating the interrelationships between mechanical, structural and molec- ular properties to identify and select those parameters and methodologies that can be used in a future arthroscopic probe based on points 1 and 2. By combining the molecular, micro- and macro-structural characteristics of the tissue with its mechanical properties, we arrive at a set of critical benchmarking parameters for viable and early-stage non-viable cartilage. The interrelationships between these characteristics, examined using a multivariate analysis based on principal components analysis, multiple linear regression and general linear modeling, could then to deter- mine those parameters and relationships which have the potential to be developed into a future clinical device. Specifically, this research has found that the ultrasound and near infrared techniques can subsume the mechanical parameters and combine to characterise the tissue at the molecular, structural and mechanical levels over the full depth of the cartilage matrix. It is the opinion in this thesis that by enabling the determination of the precise area of in uence of a focal defect or disease in the joint, demarcating the boundaries of articular cartilage with dierent levels of degeneration around a focal defect, better surgical decisions that will advance the processes of joint management and treatment will be achieved. Providing the basis for a surgical tool, this research will contribute to the enhancement and quanti�cation of arthroscopic procedures, extending to post- treatment monitoring and as a research tool, will enable a robust method for evaluating developing (particularly focalised) treatments.
Resumo:
The critical factor in determining students' interest and motivation to learn science is the quality of the teaching. However, science typically receives very little time in primary classrooms, with teachers often lacking the confidence to engage in inquiry-based learning because they do not have a sound understanding of science or its associated pedagogical approaches. Developing teacher knowledge in this area is a major challenge. Addressing these concerns with didactic "stand and deliver" modes of Professional Development (PD) has been shown to have little relevance or effectiveness, yet is still the predominant approach used by schools and education authorities. In response to that issue, the constructivist-inspired Primary Connections professional learning program applies contemporary theory relating to the characteristics of effective primary science teaching, the changes required for teachers to use those pedagogies, and professional learning strategies that facilitate such change. This study investigated the nature of teachers' engagement with the various elements of the program. Summative assessments of such PD programs have been undertaken previously, however there was an identified need for a detailed view of the changes in teachers' beliefs and practices during the intervention. This research was a case study of a Primary Connections implementation. PD workshops were presented to a primary school staff, then two teachers were observed as they worked in tandem to implement related curriculum units with their Year 4/5 classes over a six-month period. Data including interviews, classroom observations and written artefacts were analysed to identify common themes and develop a set of assertions related to how teachers changed their beliefs and practices for teaching science. When teachers implement Primary Connections, their students "are more frequently curious in science and more frequently learn interesting things in science" (Hackling & Prain, 2008). This study has found that teachers who observe such changes in their students consequently change their beliefs and practices about teaching science. They enhance science learning by promoting student autonomy through open-ended inquiries, and they and their students enhance their scientific literacy by jointly constructing investigations and explaining their findings. The findings have implications for teachers and for designers of PD programs. Assertions related to teaching science within a pedagogical framework consistent with the Primary Connections model are that: (1) promoting student autonomy enhances science learning; (2) student autonomy presents perceived threats to teachers but these are counteracted by enhanced student engagement and learning; (3) the structured constructivism of Primary Connections resources provides appropriate scaffolding for teachers and students to transition from didactic to inquiry-based learning modes; and (4) authentic science investigations promote understanding of scientific literacy and the "nature of science". The key messages for designers of PD programs are that: (1) effective programs model the pedagogies being promoted; (2) teachers benefit from taking the role of student and engaging in the proposed learning experiences; (3) related curriculum resources foster long-term engagement with new concepts and strategies; (4) change in beliefs and practices occurs after teachers implement the program or strategy and see positive outcomes in their students; and (5) implementing this study's PD model is efficient in terms of resources. Identified topics for further investigation relate to the role of assessment in providing evidence to support change in teachers' beliefs and practices, and of teacher reflection in making such change more sustainable.
Resumo:
Nitrous oxide (N2O) is primarily produced by the microbially-mediated nitrification and denitrification processes in soils. It is influenced by a suite of climate (i.e. temperature and rainfall) and soil (physical and chemical) variables, interacting soil and plant nitrogen (N) transformations (either competing or supplying substrates) as well as land management practices. It is not surprising that N2O emissions are highly variable both spatially and temporally. Computer simulation models, which can integrate all of these variables, are required for the complex task of providing quantitative determinations of N2O emissions. Numerous simulation models have been developed to predict N2O production. Each model has its own philosophy in constructing simulation components as well as performance strengths. The models range from those that attempt to comprehensively simulate all soil processes to more empirical approaches requiring minimal input data. These N2O simulation models can be classified into three categories: laboratory, field and regional/global levels. Process-based field-scale N2O simulation models, which simulate whole agroecosystems and can be used to develop N2O mitigation measures, are the most widely used. The current challenge is how to scale up the relatively more robust field-scale model to catchment, regional and national scales. This paper reviews the development history, main construction components, strengths, limitations and applications of N2O emissions models, which have been published in the literature. The three scale levels are considered and the current knowledge gaps and challenges in modelling N2O emissions from soils are discussed.
Resumo:
This thesis addresses the problem of detecting and describing the same scene points in different wide-angle images taken by the same camera at different viewpoints. This is a core competency of many vision-based localisation tasks including visual odometry and visual place recognition. Wide-angle cameras have a large field of view that can exceed a full hemisphere, and the images they produce contain severe radial distortion. When compared to traditional narrow field of view perspective cameras, more accurate estimates of camera egomotion can be found using the images obtained with wide-angle cameras. The ability to accurately estimate camera egomotion is a fundamental primitive of visual odometry, and this is one of the reasons for the increased popularity in the use of wide-angle cameras for this task. Their large field of view also enables them to capture images of the same regions in a scene taken at very different viewpoints, and this makes them suited for visual place recognition. However, the ability to estimate the camera egomotion and recognise the same scene in two different images is dependent on the ability to reliably detect and describe the same scene points, or ‘keypoints’, in the images. Most algorithms used for this purpose are designed almost exclusively for perspective images. Applying algorithms designed for perspective images directly to wide-angle images is problematic as no account is made for the image distortion. The primary contribution of this thesis is the development of two novel keypoint detectors, and a method of keypoint description, designed for wide-angle images. Both reformulate the Scale- Invariant Feature Transform (SIFT) as an image processing operation on the sphere. As the image captured by any central projection wide-angle camera can be mapped to the sphere, applying these variants to an image on the sphere enables keypoints to be detected in a manner that is invariant to image distortion. Each of the variants is required to find the scale-space representation of an image on the sphere, and they differ in the approaches they used to do this. Extensive experiments using real and synthetically generated wide-angle images are used to validate the two new keypoint detectors and the method of keypoint description. The best of these two new keypoint detectors is applied to vision based localisation tasks including visual odometry and visual place recognition using outdoor wide-angle image sequences. As part of this work, the effect of keypoint coordinate selection on the accuracy of egomotion estimates using the Direct Linear Transform (DLT) is investigated, and a simple weighting scheme is proposed which attempts to account for the uncertainty of keypoint positions during detection. A word reliability metric is also developed for use within a visual ‘bag of words’ approach to place recognition.
Resumo:
The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, we introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal [mu]-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. [mu]-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries.