942 resultados para Glycogen storage disease type II
Resumo:
OBJECTIVE: to evaluate the role of fibrillar extracellular matrix components in the pathogenesis of inguinal hernias. METHODS: samples of the transverse fascia and of the anterior sheath of the rectus abdominis muscle were collected from 40 men aged between 20 and 60 years with type II and IIIA Nyhus inguinal hernia and from 10 fresh male cadavers (controls) without hernia in the same age range. The staining technique was immunohistochemistry for collagen I, collagen III and elastic fibers; quantification of fibrillar components was performed with an image analysis processing software. RESULTS: no statistically significant differences were found in the amount of elastic fibers, collagen I and collagen III, and the ratio of collagen I / III among patients with inguinal hernia when compared with subjects without hernia. CONCLUSION: the amount of fibrillar extracellular matrix components did not change in patients with and without inguinal hernia.
Resumo:
The authors present the four-arm single docking full robotic surgery to treat low rectal cancer. The eight main operative steps are: 1- patient positioning; 2- trocars set-up and robot docking; 3- sigmoid colon, left colon and splenic flexure mobilization (lateral-to-medial approach); 4-Inferior mesenteric artery and vein ligation (medial-to-lateral approach); 5- total mesorectum excision and preservation of hypogastric and pelvic autonomic nerves (sacral dissection, lateral dissection, pelvic dissection); 6- division of the rectum using an endo roticulator stapler for the laparoscopic performance of a double-stapled coloanal anastomosis (type I tumor); 7- intersphincteric resection, extraction of the specimen through the anus and lateral-to-end hand sewn coloanal anastomosis (type II tumor); 8- cylindric abdominoperineal resection, with transabdominal section of the levator muscles (type IV tumor). The techniques employed were safe and have presented low rates of complication and no mortality.
Resumo:
Ipomoea sericophylla and Ipomoea riedelii cause a glycoprotein storage disease in goats. This paper reports the experimental poisoning in goats by dried I. sericophylla and I. riedelii containing 0.05% and 0.01% swainsonine, respectively. Three groups with four animals each were used. Group 1 received daily doses of 2g/kg body weight (bw) of dried I. sericophylla (150mg of swainsonine/kg). Goats from this group had clinical signs 36-38 days after the start of ingestion. Group 2 received dried I. riedelii daily doses of 2g/kg of I. riedelii (30mg of swainsonine/kg) for 70 days. No clinical signs were observed, therefore the swainsonine dose was increased to 60mg/kg for another 70 days. Goats from Group 2 had clinical signs 26-65 days after increase in swainsonine dose to 60mg/kg. Group 3 was used as control. In these experiments the minimum toxic dose was 60mg/kg which represents 0.0004% of the dry matter in goats ingesting 1.5% bw of the dry matter. For goats ingesting 2%-2.5% bw of dry matter this dose would be 0.00024%-0.0003% of the dry matter. After the end of the experiment two goats were euthanized and another six were observed for recovery of clinical signs. Four goats that continued to consume swainsonine containing plant for 39-89 days after the first clinical signs had non reversible signs, while two goats that ingested the plant for only 15 and 20 days after the first clinical signs recovered completely. These and previous results indicate that irreversible lesions due to neuronal loss occur in goats that continue to ingest the plants for about 30 days after the first clinical signs. Clinical signs and histological lesions were similar to those reported previously for goats poisoned by swainsonine containing plants. No significant alterations were found in packed cell volume, red and white blood cell counts, hemoglobin and mean corpuscular hemoglobin concentrations, mean corpuscular volume, and serum levels of glucose, total protein, and albumin, and the serum activities of gamma glutamyl transferase and aspartate aminotransferase. Swainsonine concentration of 0.05% in I. sericophylla and 0.01% in I. riedelii are different from samples of these plants used in previous experiments, which contained 0.14% and 0.5% swainsonine, respectively, demonstrating a wide variation in the toxicity of different samples.
Resumo:
Chronic inflammation is the underlying cause of many common disabling conditions such as rheumatoid arthritis (RA), multiple sclerosis, coeliac disease, type I diabetes and coronary artery disease. NOX2 complex derived reactive oxygen species (ROS) are known to regulate joint inflammation in rats and mice, and additionally recent genetic evidence associates phagocyte ROS and the development RA in humans. Ncf1mutated mice have lost the functionality of their NOX2 complex and thus have no phagocyte ROS production. These mice suffer from exacerbated arthritis. The immune suppressive effect of the NOX2 complex derived ROS is mediated by monocytes/macrophages that downregulate the activation of autoreactive T cells. The aim of this thesis was to study how ROS modulate immune responses in different arthritis models and in tumor development. Additionally, genome wide gene expression profiling was carried out to assess the global effects of NOX2 complex derived ROS. Firstly, these results confirmed the potent anti-inflammatory nature of phagocyte ROS in arthritis models that were driven by the adaptive immune system. Secondly, arthritis models with predominantly innate immunity induced pathophysiology were moderately enhanced by phagocyte, more specifically, neutrophil derived ROS. Thirdly, the ROS induced immune suppression mediated by the adaptive immune system allowed development of bigger implanted tumors, while phagocyte ROS production did not affect the development of spontaneously growing tumors. Lastly, genome wide gene expression analysis revealed that both humans and mice with abrogated phagocyte NOX2 complex ROS production had an enhanced type I interferon signature in blood, reflecting their hyperinflammatory immune status.
Resumo:
In Brazil, the consumption of Sida carpinifolia by livestock has been associated with neurological diseases linked to lysosomal storage disorders. This paper describes the pathological findings in two caprine fetuses from dams that were experimentally poisoned with S. carpinifolia. The goats were orally dosed with 10 and 13g/kg of a paste of green chopped S. carpinifolia for 30 days and were observed for an additional 15 days period after the last dosage with the plant; thereafter they were euthanized and necropsied. The dams showed only slight clinical signs. The study also includes the findings in one bovine fetus from a naturally S. carpinifolia poisoned cow which showed mild incoordination, generalized tremors, staggering, and frequent falls. The cow was euthanized and necropsied. While there were no significant histopathological changes in the goats, in the cow vacuolation of Purkinje neurons of the cerebellum, pancreatic acinar cells, and thyroid follicular cells were observed. The main microscopic changes observed in the caprine and bovine fetuses were vacuolation in the epithelium of renal tubules, thyroid follicular cells, and Purkinje neurons of the cerebellum. Transmission electron microscopy of sections from CNS of the cow and its fetus revealed vacuoles containing fine granular material surrounded by membrane. Lectin-histochemistry of CNS sections from goat fetuses marked lightly to sWGA lectins, WGA, and Con-A.
Resumo:
Allometry, growth and leaf demography of two Cecropia species, one with ant mutualist (C. glazioui) and another without it (C. hololeuca), were studied in an Atlantic Rain Forest area in the State of Rio de Janeiro, SE Brazil. Stem diameter was allometrically related to height in both species. Cecropia glazioui showed higher annual growth rates and longer internodes than C. hololeuca. Leaf phenology showed a seasonal pattern in both species, but the number of leaves on each plant was more variable along the year in C. hololeuca than in C. glazioui. Survivorship curves for leaves were intermediate between Deevey's Type I and Type II curves, with young leaves of C. glazioui showing a greater survival rate and life expectancy than those of C. hololeuca. Low variability in leaf production throughout the year and high survival rate for young leaves of C. glazioui may be characteristics related to its association with ants.
Resumo:
Variations in egg length were observed for two populations of cryptic species of Anastrepha fraterculus (Wiedemann). The eggs of type I flies were smaller than those of type II individuals. For both types, in regard to yolk mass extrusion, four classes of embryos were detected. Class 1: embryos that extrude masses at both extremities; class 2: embryos in which extrusion occurs only at the anterior pole; class 3: embryos that eliminate mass only at the posterior pole, and class 4: embryos that do not extrude any mass. Embryo class frequencies were similar for populations belonging to the same type, but different between types. Individual females may produce eggs from different embryo classes, but for any given female the pattern remains constant during a long period of oviposition. Variation in size of the extruded masses was similar for both populations. Individual females produced embryos with a small range of mass diameters, and different females produced masses of different mean size. However, individual mass size remained constant during oviposition. The results suggest the existence of genetic components involved in the control of this unusual process. Larvae of both types presented, just before eclosion, similar unusual behaviors: they ingest the anterior extruded mass, rotate 180°, absorb the posterior mass and eclose near the posterior pole. Data show that cryptic A. fraterculus type I and type II differs in regard to egg size as well as to the phenomenon of yolk mass extrusion
Resumo:
There is little information on the possible effects of estrogen on the activity of 5'-deiodinase (5'-ID), an enzyme responsible for the generation of T3, the biologically active thyroid hormone. In the present study, anterior pituitary sonicates or hepatic and thyroid microsomes from ovariectomized (OVX) rats treated or not with estradiol benzoate (EB, 0.7 or 14 µg/100 g body weight, sc, for 10 days) were assayed for type I 5'-ID (5'-ID-I) and type II 5'-ID (5'-ID-II, only in pituitary) activities. The 5'-ID activity was evaluated by the release of 125I from deiodinated 125I rT3, using specific assay conditions for type I or type II. Serum TSH and free T3 and free T4 were measured by radioimmunoassay. OVX alone induced a reduction in pituitary 5'-ID-I (control = 723.7 ± 67.9 vs OVX = 413.9 ± 26.9; P<0.05), while the EB-treated OVX group showed activity similar to that of the normal group. Thyroid 5'-ID-I showed the same pattern of changes, but these changes were not statistically significant. Pituitary and hepatic 5'-ID-II did not show major alterations. The treatment with the higher EB dose (14 µg), contrary to the results obtained with the lower dose, had no effect on the reduced pituitary 5'-ID-I of OVX rats. However, it induced an important increment of 5'-ID-I in the thyroid gland (0.8 times higher than that of the normal group: control = 131.9 ± 23.7 vs ovx + EB 14 µg = 248.0 ± 31.2; P<0.05), which is associated with increased serum TSH (0.6-fold vs OVX, P<0.05) but normal serum free T3 and free T4. The data suggest that estrogen is a physiological stimulator of anterior pituitary 5'-ID-I and a potent stimulator of the thyroid enzyme when employed at high doses
Resumo:
Porphyrias are a family of inherited diseases, each associated with a partial defect in one of the enzymes of the heme biosynthetic pathway. In six of the eight porphyrias described, the main clinical manifestation is skin photosensitivity brought about by the action of light on porphyrins, which are deposited in the upper epidermal layer of the skin. Porphyrins absorb light energy intensively in the UV region, and to a lesser extent in the long visible bands, resulting in transitions to excited electronic states. The excited porphyrin may react directly with biological structures (type I reactions) or with molecular oxygen, generating excited singlet oxygen (type II reactions). Besides this well-known photodynamic action of porphyrins, a novel light-independent effect of porphyrins has been described. Irradiation of enzymes in the presence of porphyrins mainly induces type I reactions, although type II reactions could also occur, further increasing the direct non-photodynamic effect of porphyrins on proteins and macromolecules. Conformational changes of protein structure are induced by porphyrins in the dark or under UV light, resulting in reduced enzyme activity and increased proteolytic susceptibility. The effect of porphyrins depends not only on their physico-chemical properties but also on the specific site on the protein on which they act. Porphyrin action alters the functionality of the enzymes of the heme biosynthetic pathway exacerbating the metabolic deficiencies in porphyrias. Light energy absorption by porphyrins results in the generation of oxygen reactive species, overcoming the protective cellular mechanisms and leading to molecular, cell and tissue damage, thus amplifying the porphyric picture.
Resumo:
The pathogenic fungus Sporothrix schenckii is the causative agent of sporotrichosis. This subcutaneous mycosis may disseminate in immunocompromised individuals and also affect several internal organs and tissues, most commonly the bone, joints and lung. Since adhesion is the first step involved with the dissemination of pathogens in the host, we have studied the interaction between S. schenckii and several extracellular matrix (ECM) proteins. The binding of two morphological phases of S. schenckii, yeast cells and conidia, to immobilized type II collagen, laminin, fibronectin, fibrinogen and thrombospondin was investigated. Poly (2-hydroxyethyl methacrylate) (poly-HEMA) was used as the negative control. Cell adhesion was assessed by ELISA with a rabbit anti-S. schenckii antiserum. The results indicate that both morphological phases of this fungus can bind significantly to type II collagen, fibronectin and laminin in comparison to the binding observed with BSA (used as blocking agent). The adhesion rate observed with the ECM proteins (type II collagen, fibronectin and laminin) was statistically significant (P<0.05) when compared to the adhesion obtained with BSA. No significant binding of conidia was observed to either fibrinogen or thrombospondin, but yeast cells did bind to the fibrinogen. Our results indicate that S. schenckii can bind to fibronectin, laminin and type II collagen and also show differences in binding capacity according to the morphological form of the fungus.
Resumo:
Policosanol is a mixture of higher aliphatic alcohols purified from sugar cane wax, with cholesterol-lowering effects demonstrable in experimental models and in patients with type II hypercholesterolemia. The protective effects of policosanol on atherosclerotic lesions experimentally induced by lipofundin in rabbits and rats and spontaneously developed in stumptail monkeys have been described. The present study was conducted to determine whether policosanol administered orally to rabbits with exogenous hypercholesterolemia also protects against the development of atherosclerotic lesions. Male New Zealand rabbits weighing 1.5 to 2 kg were randomly divided into three experimental groups which received 25 or 200 mg/kg policosanol (N = 7) orally for 60 days with acacia gum as vehicle or acacia gum alone (control group, N = 9). All animals received a cholesterol-rich diet (0.5%) during the entire period. Control animals developed marked hypercholesterolemia, macroscopic lesions and arterial intimal thickening. Intima thickness was significantly less (32.5 ± 7 and 25.4 ± 4 µm) in hypercholesterolemic rabbits treated with policosanol than in controls (57.6 ± 9 µm). In most policosanol-treated animals, atherosclerotic lesions were not present, and in others, thickness of fatty streaks had less foam cell layers than in controls. We conclude that policosanol has a protective effect on the atherosclerotic lesions occurring in this experimental model.
Resumo:
Aldosterone, the major circulating mineralocorticoid, participates in blood volume and serum potassium homeostasis. Primary aldosteronism is a disorder characterised by hypertension and hypokalaemia due to autonomous aldosterone secretion from the adrenocortical zona glomerulosa. Improved screening techniques, particularly application of the plasma aldosterone:plasma renin activity ratio, have led to a suggestion that primary aldosteronism may be more common than previously appreciated among adults with hypertension. Glucocorticoid-remediable aldosteronism (GRA) was the first described familial form of hyperaldosteronism. The disorder is characterised by aldosterone secretory function regulated chronically by ACTH. Hence, aldosterone hypersecretion can be suppressed, on a sustained basis, by exogenous glucocorticoids such as dexamethasone in physiologic range doses. This autosomal dominant disorder has been shown to be caused by a hybrid gene mutation formed by a crossover of genetic material between the ACTH-responsive regulatory portion of the 11ß-hydroxylase (CYP11B1) gene and the coding region of the aldosterone synthase (CYP11B2) gene. Familial hyperaldosteronism type II (FH-II), so named to distinguish the disorder from GRA or familial hyperaldosteronism type I (FH-I), is characterised by autosomal dominant inheritance of autonomous aldosterone hypersecretion which is not suppressible by dexamethasone. Linkage analysis in a single large kindred, and direct mutation screening, has shown that this disorder is unrelated to mutations in the genes for aldosterone synthase or the angiotensin II receptor. The precise genetic cause of FH-II remains to be elucidated.
Resumo:
2-Hydroxybutyric acid appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. The present study was carried out to determine the effect of 2-hydroxybutyric acid at various concentrations (1-10 mM) on CO2 production and lipid synthesis from labeled substrates in cerebral cortex of 30-day-old Wistar rats in vitro. CO2 production was significantly inhibited (30-70%) by 2-hydroxybutyric acid in cerebral cortex prisms, in total homogenates and in the mitochondrial fraction. We also demonstrated a significant inhibition of lipid synthesis (20-45%) in cerebral cortex prisms and total homogenates in the presence of 2-hydroxybutyric acid. However, no inhibition of lipid synthesis occurred in homogenates free of nuclei and mitochondria. The results indicate an impairment of mitochondrial energy metabolism caused by 2-hydroxybutyric acid, a fact that may secondarily lead to reduction of lipid synthesis. It is possible that these findings may be associated with the neuropathophysiology of the situations where 2-hydroxybutyric acid is accumulated.
Resumo:
The precise nature of hormones and growth factors directly responsible for cartilage maturation is still largely unclear. Since longitudinal bone growth occurs through endochondral bone formation, excess or deficiency of most hormones and growth factors strongly influences final adult height. The structure and composition of the cartilaginous extracellular matrix have a critical role in regulating the behavior of growth plate chondrocytes. Therefore, the maintenance of the three-dimensional cell-matrix interaction is necessary to study the influence of individual signaling molecules on chondrogenesis, cartilage maturation and calcification. To investigate the effects of insulin on both proliferation and induction of hypertrophy in chondrocytes in vitro we used high-density micromass cultures of chick embryonic limb mesenchymal cells. Culture medium was supplemented with 1% FCS + 60 ng/ml (0.01 µM) insulin and cultures were harvested at regular time points for later analysis. Proliferating cell nuclear antigen immunoreactivity was widely detected in insulin-treated cultures and persisted until day 21 and [³H]-thymidine uptake was highest on day 14. While apoptosis increased in control cultures as a function of culture time, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-labeled cells were markedly reduced in the presence of insulin. Type II collagen production, alkaline phosphatase activity and cell size were also lower in insulin-treated cultures. Our results indicate that under the influence of 60 ng/ml insulin, chick chondrocytes maintain their proliferative potential but do not become hypertrophic, suggesting that insulin can affect the regulation of chondrocyte maturation and hypertrophy, possibly through an antiapoptotic effect.
Resumo:
The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a ß2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10), treated with salbutamol (N = 30), denervated (N = 30), and treated with salbutamol after denervation (N = 30). Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21%) in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other ß2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.