779 resultados para Gestational diabetes mellitus (GDM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE Inflammation and endothelial dysfunction have been associated with the immunobiology of preeclampsia (PE), a significant cause of adverse pregnancy outcomes. The prevalence of PE is elevated several fold in the presence of maternal type 1 diabetes mellitus (T1DM). Although cross-sectional studies of pregnancies among women without diabetes have shown altered inflammatory markers in the presence of PE, longitudinal studies of diabetic women are lacking. In maternal serum samples, we examined the temporal associations of markers of inflammation with the subsequent development of PE in women with T1DM. RESEARCH DESIGN AND METHODS We conducted longitudinal analyses of serum C-reactive protein (CRP), adhesion molecules, and cytokines during the first (mean ± SD, 12.2 ± 1.9 weeks), second (21.6 ± 1.5 weeks), and third (31.5 ± 1.7 weeks) trimesters of pregnancy (visits 1-3, respectively). All study visits took place before the onset of PE. Covariates were BMI, HbA1c, age of onset, duration of diabetes, and mean arterial pressure. RESULTS In women with T1DM who developed PE versus those who remained normotensive, CRP tended to be higher at visits 1 (P = 0.07) and 2 (P = 0.06) and was significantly higher at visit 3 (P <0.05); soluble E-selectin and interferon-?-inducible protein-10 (IP-10) were significantly higher at visit 3; interleukin-1 receptor antagonist (IL-1ra) and eotaxin were higher and lower, respectively, at visit 2 (all P <0.05). These conclusions persisted following adjustment for covariates. CONCLUSIONS In pregnant women with T1DM, elevated CRP, soluble E-selectin, IL-1ra, and IP-10 and lower eotaxin were associated with subsequent PE. The role of inflammatory factors as markers and potential mechanisms of the high prevalence of PE in T1DM merits further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether immunocomplexes (ICs) containing advanced glycation end product (AGE)-LDL (AGE-LDL) and oxidized LDL (oxLDL) contribute to the development of retinopathy over a 16-year period in subjects with type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: In nondiabetic pregnancy, cross-sectional studies have shown associations between maternal dyslipidemia and preeclampsia (PE). In type 1 diabetes mellitus (T1DM), the prevalence of PE is increased 4-fold, but prospective associations with plasma lipoproteins are unknown.

Objectives: The aim of this study was to define lipoprotein-related markers and potential mechanisms for PE in T1DM.

Design and Settings: We conducted a multicenter prospective study in T1DM pregnancy.

Patients: We studied 118 T1DM women (26 developed PE, 92 remained normotensive). Subjects were studied at three visits before PE onset [12.2 1.9, 21.6 1.5, and 31.5 1.7 wk gestation (means SD)] and at term (37.6 2.0 wk). Nondiabetic normotensive pregnant women (n 21) were included for reference.

Main Outcome Measures: Conventional lipid profiles, lipoprotein subclasses [defined by size (nuclear magnetic resonance) and by apolipoprotein content], serum apolipoproteins (ApoAI, ApoB, and ApoCIII), and lipolysis (ApoCIII ratio) were measured in T1DM women with and without subsequent PE.

Results: In women with vs. without subsequent PE, at the first and/or second study visits: lowdensity lipoprotein (LDL)-cholesterol, particle concentrations of total LDL and large (but not small) LDL, serum ApoB, and ApoB:ApoAI ratio were all increased (P 0.05); peripheral lipoprotein lipolysis was decreased (P0.01). These early differences remained significant in covariate analysis (glycated hemoglobin, actual prandial status, gravidity, body mass index, and diabetes duration) but were not present at the third study visit. High-density lipoprotein and very low-density lipoprotein subclasses did not differ between groups before PE onset.

Conclusions: Early in pregnancy, increased cholesterol-rich lipoproteins and an index suggesting decreased peripheral lipolysis were associated with subsequent PE in T1DM women. Background maternal lipoprotein characteristics, perhaps masked by effects of late pregnancy, may influence PE risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An impaired glomerular filtration rate (GFR) leads to end-stage renal disease and increases the risks of cardiovascular disease and death. Persons with type 1 diabetes are at high risk for kidney disease, but there are no interventions that have been proved to prevent impairment of the GFR in this population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dyslipidemia is an important risk factor for cardiovascular complications in persons with diabetes. Low-density lipoprotein-cholesterol (LDL-C) is the 'cornerstone' for assessment of lipoprotein-associated risk. However, LDL-C levels do not reflect the classic 'diabetic dyslipidemia' of hypertriglyceridemia and low high-density lipoprotein-cholesterol (HDL-C). Measurements of plasma apolipoprotein B100 concentrations and non-HDL-C may improve the definition of dyslipidemia. Statins, nicotinic acid and fibrates have roles in treating dyslipidemia in diabetes. Residual risk (i.e. risk that persists after correction of 'conventional' plasma lipoprotein abnormalities) is a new concept in the role of dyslipidemia in the pathogenesis of diabetic vascular complications. For example, regardless of plasma levels, lipoprotein extravasation through a leaking retinal blood barrier and subsequent modification may be crucial in the development of diabetic retinopathy. The current approach to the management of dyslipidemia in diabetes is briefly summarized, followed by a discussion of new concepts of residual risk and emerging lipoprotein-related mechanisms for vascular disease in diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased oxidative stress and immune dysfunction are implicated in preeclampsia (PE) and may contribute to the two- to fourfold increase in PE prevalence among women with type 1 diabetes. Prospective measures of fat-soluble vitamins in diabetic pregnancy are therefore of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the dose-response relationship of lixisenatide (AVE0010), a glucagon-like peptide-1 (GLP-1) receptor agonist, in metformin-treated patients with Type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the feasibility of educating adults about their risk of prediabetes/diabetes in a community pharmacy, to determine the common risk factors for prediabetes/diabetes in adults visiting a community pharmacy, and to assess any association between risk factors and age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine in Type 1 diabetes patients if levels of pigment epithelium-derived factor (PEDF), an anti-angiogenic, anti-inflammatory and antioxidant factor, are increased in individuals with complications and positively related to vascular and renal dysfunction, body mass index, glycated haemoglobin, lipids, inflammation and oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined whether oxidative damage in collagen is increased in (1) patients with diabetes; (2) patients with diabetic complications; and (3) subjects from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) study, with comparison of subjects from the former standard vs intensive treatment groups 4 years after DCCT completion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the consequences of diabetes and obesity, diseases that have become epidemic in our society, particularly in the past 20 years. Specifically, it summarizes current knowledge about some of the risk factors and mechanisms for the vascular complications of diabetes. These complications can be broadly divided into microvascular disease, such as diabetic retinopathy and diabetic nephropathy, and macrovascular disease, such as accelerated atherosclerosis, and they are the main cause for morbidity and premature mortality among diabetic patients. The roles of hyperglycemia, dyslipidemia and dyslipoproteinemia, oxidative stress, and endothelial dysfunction will be considered. Finally, the "treatment gap" will be addressed. This gap refers to our failure to achieve currently accepted goals to reduce established risk factors for complications in the clinical management of diabetic patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the associations of apolipoprotein C-III (apoCIII) protein and apoCIII gene variation with microvascular disease complications in Type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that low-density lipoprotein (LDL) modified by glycation may be more susceptible to oxidation and thus, enhance its atherogenicity. Using affinity chromatography, LDL glycated in vivo (G-LDL) and relatively nonglycated. (N-LDL) subfractions can be isolated from the same individual. The extent of and susceptibility to oxidation of N-LDL compared with G-LDL was determined in 15 type 1 diabetic patients. Total LDL was isolated and separated by boronate affinity chromatography into relatively glycated (G-) and nonglycated (N-) subfractions. The extent of glycation, glycoxidation, and lipoxidation, lipid soluble antioxidant content, susceptibility to in vitro oxidation, and nuclear magnetic resonance (NMR)-determined particle size and subclass distribution were determined for each subfraction. Glycation, (fructose-lysine) was higher in G-LDL versus N-LDL, (0.28 +/- 0.08 v 0.13 +/- 0.04 mmol/mol lysine, P <.0001). However, levels of glycoxidation/lipoxidation products and of antioxidants were similar or lower in G-LDL compared with N-LDL and were inversely correlated with fructose-lysine (FL) concentrations in G-LDL, but positively correlated in N-LDL. In vitro LDL (CuCl2) oxidation demonstrated a longer lag time for oxidation of G-LDL than N-LDL (50 +/- 0.16 v 37 +/- 0.15 min, P <.01), but there was no difference in the rate or extent of lipid oxidation, nor in any aspect of protein oxidation. Mean LDL particle size and subclass distribution did not differ between G-LDL and N-LDL. Thus, G-LDL from well-controlled type 1 diabetic patients is not more modified by oxidation, more susceptible to oxidation, or smaller than relatively N-LDL, suggesting alternative factors may contribute to the atherogenicity of LDL from type 1 diabetic patients.