729 resultados para Geothermal engineering
Resumo:
Undergraduate education has a historical tradition of preparing students to meet the problem-solving challenges they will encounter in work, civic, and personal contexts. This thesis research was conducted to study the role of rhetoric in engineering problem solving and decision making and to pose pedagogical strategies for preparing undergraduate students for workplace problem solving. Exploratory interviews with engineering managers as well as the heuristic analyses of engineering A3 project planning reports suggest that Aristotelian rhetorical principles are critical to the engineer's success: Engineers must ascertain the rhetorical situation surrounding engineering problems; apply and adapt invention heuristics to conduct inquiry; draw from their investigation to find innovative solutions; and influence decision making by navigating workplace decision-making systems and audiences using rhetorically constructed discourse. To prepare undergraduates for workplace problem solving, university educators are challenged to help undergraduates understand the exigence and realize the kairotic potential inherent in rhetorical problem solving. This thesis offers pedagogical strategies that focus on mentoring learning communities in problem-posing experiences that are situated in many disciplinary, work, and civic contexts. Undergraduates build a flexible rhetorical technê for problem solving as they navigate the nuances of relevant problem-solving systems through the lens of rhetorical practice.
Resumo:
There is ample evidence of a longstanding and pervasive discourse positioning students, and engineering students in particular, as “bad writers.” This is a discourse perpetuated within the academy, the workplace, and society at large. But what are the effects of this discourse? Are students aware faculty harbor the belief students can’t write? Is student writing or confidence in their writing influenced by the negative tone of the discourse? This dissertation attempts to demonstrate that a discourse disparaging student writing exists among faculty, across disciplines, but particularly within the engineering disciplines, as well as to identify the reach of that discourse through the deployment of two attitudinal surveys—one for students, across disciplines, at Michigan Technological University and one for faculty, across disciplines at universities and colleges both within the United States and internationally. This project seeks to contribute to a more accurate and productive discourse about engineering students, and more broadly, all students, as writers—one that focuses on competencies rather than incompetence, one that encourages faculty to find new ways to characterize students as writers, and encourages faculty to recognize the limits of the utility of practitioner lore.
Resumo:
Attempts to strengthen a chromium-modified titanium trialuminide by a combination of grain size refinement and dispersoid strengthening led to a new means to synthesize such materials. This Reactive Mechanical Alloying/Milling process uses in situ reactions between the metallic powders and elements from a process control agent and/or a gaseous environment to assemble a dispersed small hard particle phase within the matrix by a bottom-up approach. In the current research milled powders of the trialuminide alloy along with titanium carbide were produced. The amount of the carbide can be varied widely with simple processing changes and in this case the milling process created trialuminide grain sizes and carbide particles that are the smallest known from such a process. Characterization of these materials required the development of x-ray diffraction means to determine particle sizes by deconvoluting and synthesizing components of the complex multiphase diffraction patterns and to carry out whole pattern analysis to analyze the diffuse scattering that developed from larger than usual highly defective grain boundary regions. These identified regions provide an important mass transport capability in the processing and not only facilitate the alloy development, but add to the understanding of the mechanical alloying process. Consolidation of the milled powder that consisted of small crystallites of the alloy and dispersed carbide particles two nanometers in size formed a unique, somewhat coarsened, microstructure producing an ultra-high strength solid material composed of the chromium-modified titanium trialuminide alloy matrix with small platelets of the complex carbides Ti2AlC and Ti3AlC2. This synthesis process provides the unique ability to nano-engineer a wide variety of composite materials, or special alloys, and has shown the ability to be extended to a wide variety of metallic materials.
Resumo:
Work on a real life pavement engineering problem. This afternoon you will be working with Dr. Yan on the question: How do you make the most cost effective choice between two types of pavement contracting methods?
Resumo:
To what extent is “software engineering” really “engineering” as this term is commonly understood? A hallmark of the products of the traditional engineering disciplines is trustworthiness based on dependability. But in his keynote presentation at ICSE 2006 Barry Boehm pointed out that individuals’, systems’, and peoples’ dependency on software is becoming increasingly critical, yet that dependability is generally not the top priority for software intensive system producers. Continuing in an uncharacteristic pessimistic vein, Professor Boehm said that this situation will likely continue until a major software-induced system catastrophe similar in impact to the 9/11 World Trade Center catastrophe stimulates action toward establishing accountability for software dependability. He predicts that it is highly likely that such a software-induced catastrophe will occur between now and 2025. It is widely understood that software, i.e., computer programs, are intrinsically different from traditionally engineered products, but in one aspect they are identical: the extent to which the well-being of individuals, organizations, and society in general increasingly depend on software. As wardens of the future through our mentoring of the next generation of software developers, we believe that it is our responsibility to at least address Professor Boehm’s predicted catastrophe. Traditional engineering has, and continually addresses its social responsibility through the evolution of the education, practice, and professional certification/licensing of professional engineers. To be included in the fraternity of professional engineers, software engineering must do the same. To get a rough idea of where software engineering currently stands on some of these issues we conducted two surveys. Our main survey was sent to software engineering academics in the U.S., Canada, and Australia. Among other items it sought detail information on their software engineering programs. Our auxiliary survey was sent to U.S. engineering institutions to get some idea about how software engineering programs compared with those in established engineering disciplines of Civil, Electrical, and Mechanical Engineering. Summaries of our findings can be found in the last two sections of our paper.
Resumo:
There is a tremendous amount of mystery that surrounds the instruments of Antonio Stradivari. There have been many studies done in the past, but no one completely understands exactly how he made his instruments, or why they are still considered the best in the world. This project is designed to develop an engineering model of one of Stradivari's violins that will accurately simulate the structural and acoustic behavior of the instrument. It also hopes to shine some light on what makes the instruments of Stradivari unique when compared to other violins. It will focus on geometry and material properties, utilizing several modern engineering tools, including CT scanning, experimental modal analysis, finite element analysis, correlation techniques, and acoustic synthesis.
Resumo:
The objective for this thesis is to outline a Performance-Based Engineering (PBE) framework to address the multiple hazards of Earthquake (EQ) and subsequent Fire Following Earthquake (FFE). Currently, fire codes for the United States are largely empirical and prescriptive in nature. The reliance on prescriptive requirements makes quantifying sustained damage due to fire difficult. Additionally, the empirical standards have resulted from individual member or individual assembly furnace testing, which have been shown to differ greatly from full structural system behavior. The very nature of fire behavior (ignition, growth, suppression, and spread) is fundamentally difficult to quantify due to the inherent randomness present in each stage of fire development. The study of interactions between earthquake damage and fire behavior is also in its infancy with essentially no available empirical testing results. This thesis will present a literature review, a discussion, and critique of the state-of-the-art, and a summary of software currently being used to estimate loss due to EQ and FFE. A generalized PBE framework for EQ and subsequent FFE is presented along with a combined hazard probability to performance objective matrix and a table of variables necessary to fully implement the proposed framework. Future research requirements and summary are also provided with discussions of the difficulties inherent in adequately describing the multiple hazards of EQ and FFE.
Resumo:
Many schools do not begin to introduce college students to software engineering until they have had at least one semester of programming. Since software engineering is a large, complex, and abstract subject it is difficult to construct active learning exercises that build on the students’ elementary knowledge of programming and still teach basic software engineering principles. It is also the case that beginning students typically know how to construct small programs, but they have little experience with the techniques necessary to produce reliable and long-term maintainable modules. I have addressed these two concerns by defining a local standard (Montana Tech Method (MTM) Software Development Standard for Small Modules Template) that step-by-step directs students toward the construction of highly reliable small modules using well known, best-practices software engineering techniques. “Small module” is here defined as a coherent development task that can be unit tested, and can be car ried out by a single (or a pair of) software engineer(s) in at most a few weeks. The standard describes the process to be used and also provides a template for the top-level documentation. The instructional module’s sequence of mini-lectures and exercises associated with the use of this (and other) local standards are used throughout the course, which perforce covers more abstract software engineering material using traditional reading and writing assignments. The sequence of mini-lectures and hands-on assignments (many of which are done in small groups) constitutes an instructional module that can be used in any similar software engineering course.
Resumo:
Two librarians at a small STEM academic library have partnered with professors to develop and teach chemistry and writing courses. These librarians have successfully worked with professors to serve as an active presence within the classroom. This article describes the challenges of navigating the typical obstacles librarians face when attempting to integrate information literacy into the curriculum, reflects on the benefits of these collaborations, and touches on strategies for implementing similar programs at other institutions. It outlines two distinct approaches to collaborating with professors on credit-bearing information literacy courses, along with the key steps involved in planning and implementing these courses, including generating institutional buy-in, identifying potential collaborators, negotiating workload and responsibilities with collaborators, and planning to sustain courses beyond a single academic year. Suggestions for overcoming obstacles, supplemented by experience-based recommendations, are discussed.
Resumo:
In January, 2010, the Petroleum Engineering department at Montana Tech moved into a new building, the Natural Resources Building, to start a new chapter in the history of the program on campus. Occupying a new building is a positive event, and it coincides with a surge of student enrollment which is prompted by industry needs and world energy demand. This time of new facilities and growing student numbers leads to the question of what the future has in store for the department. It also leads to reflection about where the department has been in the past. This history is a record and a story of that past.
Resumo:
While the WTO agreements do not regulate the use of biotechnology per se, their rules can have a profound impact on the use of the technology for both commercial and non-commercial purposes. This book seeks to identify the challenges to international trade regulation that arise from biotechnology. The contributions examine whether existing international obligations of WTO Members are appropriate to deal with the issues arising for the use of biotechnology and whether there is a need for new international legal instruments, including a potential WTO Agreement on Biotechnology. They combine various perspectives on and topics relating to genetic engineering and trade, including human rights and gender; intellectual property rights; traditional knowledge and access and benefit sharing; food security, trade and agricultural production and food safety; and medical research, cloning and international trade.
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.