958 resultados para Geology, Stratigraphic -- Cretaceous -- Catalonia -- Bac Grillera, Mountains


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the relationship between the North American monsoon, the Californian sea surface temperature (SST) cold pool, the Rocky Mountains and the North Pacific subtropical anticyclone is investigated using the Hadley Centre's atmospheric climate model, HadAM3. In 1996 Hoskins hypothesized that heating in the North American monsoon might be important for the maintenance of the summertime North Pacific subtropical anticyclone, since the monsoon heating may induce descent to the north-west of the monsoon in the descending eastern flank of the subtropical anticyclone. This descent is further enhanced by radiative cooling and is associated with equatorward surface winds parallel to the western coast of North America. These equatorward winds induce oceanic upwelling of cold water and contribute to the formation of the Californian SST cold pool, which may feed back on the anticyclone by further suppressing convection and inducing descent. More recently, Rodwell and Hoskins also investigated the global summer monsoon–subtropical anticyclone relationship. They examined the role that mountains play in impeding the progress of the low-level mid-latitude westerlies, either deflecting the westerlies northwards where they ascend along the sloping mid-latitude isentropes or deflecting them southwards forcing them to descend along the isentropes. In particular, the introduction of the Rockies into a primitive-equation model adiabatically induces descent in the eastern descending flank of the North Pacific subtropical anticyclone. These hypothesized mechanisms have been investigated using HadAM3, focusing on the possible suppression of convection by the Californian SST cold pool, the response of the North Pacific subtropical anticyclone to the strength of the North American monsoon and the ‘blocking’ of the mid-latitude westerlies by the Rocky Mountains. The role of the Rockies is examined by integrating the model with modified orography for the Rocky Mountains. Changing the height of the Rockies alters the circulation in a way consistent with the mechanism outlined above. Higher Rocky mountains force the westerlies southwards, inducing descent in the eastern flank of the subtropical anticyclone as the air descends along the sloping isentropes. The relationship between the North American monsoon and the North Pacific subtropical anticyclone is investigated by suppressing the monsoon in HadAM3. The suppression of the monsoon is accomplished by increasing the surface albedo over Mexico, which induces anomalous ascent on the eastward flank of the subtropical anticyclone and anomalous polewards surface winds along the western coast of the North American continent, also providing support for the above hypothesis. The removal of the Californian SST cold pool, however, has a statistically insignificant effect on the model, suggesting that in this model the feedback of the SST cold pool on the eastern flank of the anticyclone is weak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of the variation of the Coriolis parameter f on the drag exerted by internal Rossby-gravity waves on elliptical mountains is evaluated using linear theory, assuming constant wind and static stability and a beta-plane approximation. Previous calculations of inertia-gravity wave drag are thus extended in an attempt to establish a connection with existing studies on planetary wave drag, developed primarily for fluids topped by a rigid lid. It is found that the internal wave drag for zonal westerly flow strongly increases relative to that given by the calculation where f is assumed to be a constant, particularly at high latitudes and for mountains aligned meridionally. Drag increases with mountain width for sufficiently wide mountains, reaching values much larger than those valid in the non-rotating limit. This occurs because the drag receives contributions from a low wavenumber range, controlled by the beta effect, which accounts for the drag amplification found here. This drag amplification is shown to be considerable for idealized analogues of real mountain ranges, such as the Himalayas and the Rocky mountains, and comparable to the barotropic Rossby wave drag addressed in previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical model of orographic gravity wave drag due to sheared flow past elliptical mountains is developed. The model extends the domain of applicability of the well-known Phillips model to wind profiles that vary relatively slowly in the vertical, so that they may be treated using a WKB approximation. The model illustrates how linear processes associated with wind profile shear and curvature affect the drag force exerted by the airflow on mountains, and how it is crucial to extend the WKB approximation to second order in the small perturbation parameter for these effects to be taken into account. For the simplest wind profiles, the normalized drag depends only on the Richardson number, Ri, of the flow at the surface and on the aspect ratio, γ, of the mountain. For a linear wind profile, the drag decreases as Ri decreases, and this variation is faster when the wind is across the mountain than when it is along the mountain. For a wind that rotates with height maintaining its magnitude, the drag generally increases as Ri decreases, by an amount depending on γ and on the incidence angle. The results from WKB theory are compared with exact linear results and also with results from a non-hydrostatic nonlinear numerical model, showing in general encouraging agreement, down to values of Ri of order one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-drag states produced in stratified flow over a 2D ridge and an axisymmetric mountain are investigated using a linear, hydrostatic, analytical model. A wind profile is assumed where the background velocity is constant up to a height z1 and then decreases linearly, and the internal gravity-wave solutions are calculated exactly. In flow over a 2D ridge, the normalized surface drag is given by a closed-form analytical expression, while in flow over an axisymmetric mountain it is given by an expression involving a simple 1D integral. The drag is found to depend on two dimensionless parameters: a dimensionless height formed with z_1, and the Richardson number, Ri, in the shear layer. The drag oscillates as z_1 increases, with a period of half the hydrostatic vertical wavelength of the gravity waves. The amplitude of this modulation increases as Ri decreases. This behaviour is due to wave reflection at z_1. Drag maxima correspond to constructive interference of the upward- and downward-propagating waves in the region z < z_1, while drag minima correspond to destructive interference. The reflection coefficient at the interface z = z_1 increases as Ri decreases. The critical level, z_c, plays no role in the drag amplification. A preliminary numerical treatment of nonlinear effects is presented, where z_c appears to become more relevant, and flow over a 2D ridge qualitatively changes its character. But these effects, and their connection with linear theory, still need to be better understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the relative importance of instream nutrient spiralling and wetland transformation processes on surface water quality, total nitrogen (TN) and total phosphorus (TP) concentrations in a 200 m reach of the River Lambourn in the south-east of England were monitored over a 2-year period. In addition, the soil pore water nutrient dynamics in a riparian ecosystem adjacent to the river were investigated. Analysis of variance indicated that TN, TP and suspended sediment concentrations recorded upstream of the wetland were statistically significantly higher (P<0.05) than those downstream of the site. Such results suggest that the wetland was performing a nutrient retention function. Indeed, analysis of soil pore waters within the site show that up to 85% of TN and 70% of TP was removed from water flowing through the wetland during baseflow conditions, thus supporting the theory that the wetland played an important role in the regulation of surface water quality at the site. However, the small variations observed (0.034 mg TN l-1 and 0.031 mg P l-1) are consistent with the theory of nutrient spiralling suggesting that both instream and wetland retention processes have a causal effect on surface water quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Um Sohryngkew section of Meghalaya, NE India, located 800–1000 km from the Deccan volcanic province, is one of the most complete Cretaceous–Tertiary boundary (KTB) transitions worldwide with all defining and supporting criteria present: mass extinction of planktic foraminifera, first appearance of Danian species, δ13C shift, Ir anomaly (12 ppb) and KTB red layer. The geochemical signature of the KTB layer indicates not only an extraterrestrial signal (Ni and all Platinum Group Elements (PGEs)) of a second impact that postdates Chicxulub, but also a significant component resulting from condensed sedimentation (P), redox fluctuations (As, Co, Fe, Pb, Zn, and to a lesser extent Ni and Cu) and volcanism. From the late Maastrichtian C29r into the early Danian, a humid climate prevailed (kaolinite: 40–60%, detrital minerals: 50–80%). During the latest Maastrichtian, periodic acid rains (carbonate dissolution; CIA index: 70–80) associated with pulsed Deccan eruptions and strong continental weathering resulted in mesotrophic waters. The resulting super-stressed environmental conditions led to the demise of nearly all planktic foraminiferal species and blooms (> 95%) of the disaster opportunist Guembelitria cretacea. These data reveal that detrimental marine conditions prevailed surrounding the Deccan volcanic province during the main phase of eruptions in C29r below the KTB. Ultimately these environmental conditions led to regionally early extinctions followed by global extinctions at the KTB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upper Cenomanian pelagic sediments from the northern Alpine Helvetic fold-and-thrust belt (northern Tethyan margin) coeval with Oceanic Anoxic Event (OAE) 2 are characterized by the temporal persistence of micrite sedimentation and lack of organic carbon-rich layers. We studied an expanded section in the Chrummflueschlucht (east of Euthal, Switzerland), which encompasses the OAE 2 time interval. In order to identify the paleoceanographic and paleoenvironmental conditions during OAE 2 in this part of the northern Tethyan margin, and more specifically to trace eventual changes in nutrient levels and oxic conditions, we investigated the biostratigraphy (planktonic foraminifera), the bulk-rock mineralogy, and measured stable carbon- and oxygen-isotopes, total phosphorus (P) and redox-sensitive trace-element (RSTE) contents. We were able to determine – with some remaining uncertainties – the different planktonic foraminiferal biozones characteristic of the Cenomanian–Turonian boundary interval (Rotalipora cushmani, Whiteinella archaeocretacea and Helvetoglobotruncana helvetica zones). In the lower part of the section (R. cushmani total range zone), the bulk-rock δ13C record shows a long-term increase. Within sediments attributed to the W. archaeocretacea partial range zone, δ13C values reach a maximum of 3.3‰ (peak “a”). In the following the values decrease and increase again to arrive at a plateau with high δ13C values of around 3.1‰, which ends with a peak of 3.3‰ (peak “c”). At the top of the section, in sediments belonging to the H. helvetica total range zone, δ13C values decrease to post-OAE values of around 2.2‰. The last occurrence of R. cushmani is observed just above the positive δ13C shift characterizing OAE 2. P contents display small variations along the section with a long-term decreasing trend towards the top. Before the OAE 2 interval, P values show higher values and relatively good covariation with detrital input, indicating higher nutrient input before OAE 2. In sediments corresponding to the onset of the δ13C positive excursion, P content is marked by a sharp peak probably linked to a slowdown in sedimentation rates and/or the presence of a small hiatus, as is shown by the presence of glauconite and phosphatic grains. In the interval corresponding to OAE 2, P values remain low and increase slightly at the end of the positive shift in the δ13C record (in the H. helvetica total range zone). The average contents of RSTE (U, V, As, Co, Mo and Mn) remain low throughout the section and appreciable RSTE enrichments have not been observed for the sedimentary interval corresponding to OAE 2. No correlation is observed with stratigraphic trends in RSTE contents in organic-rich deeper-water sections. The presence of double-keeled planktonic foraminifera species during most of the Cenomanian/Turonian boundary event is another evidence of relatively well-oxygenated conditions in this part of the northern Tethyan outer shelf. Our results show that the Chrummflueschlucht section corresponds to one of the most complete section for the Cenomanian–Turonian boundary interval known from the Helvetic realm even if a small hiatus may be present at the onset of the δ13C record (peak “a”). The evolution of P contents suggests an increase in input of this nutritive element at the onset of OAE2. However, the trends in RSTE contents and the planktonic foraminifera assemblages show that the Helvetic realm has not been affected by strongly depleted oxygen conditions during OAE 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution “provenancing” of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the “provenancing” of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recession of mountain glaciers around the world has been linked to anthropogenic climate change and small glaciers (e.g. < 2 km2) are thought to be particularly vulnerable, with reports of their disappearance from several regions. However, the response of small glaciers to climate change can be modulated by non-climatic factors such as topography and debris cover and there remain a number of regions where their recent change has evaded scrutiny. This paper presents results of the first multi-year remote sensing survey of glaciers in the Kodar Mountains, the only glaciers in SE Siberia, which we compare to previous glacier inventories from this continental setting that reported total glacier areas of 18.8 km2 in ca. 1963 (12.6 km2 of exposed ice) and 15.5 km2 in 1974 (12 km2 of exposed ice). Mapping their debris-covered termini is difficult but delineation of debris-free ice on Landsat imagery reveals 34 glaciers with a total area of 11.72 ± 0.72 km2 in 1995, followed by a reduction to 9.53 ± 0.29 km2 in 2001 and 7.01 ± 0.23 km2 in 2010. This represents a ~ 44% decrease in exposed glacier ice between ca. 1963 and 2010, but with 40% lost since 1995 and with individual glaciers losing as much as 93% of their exposed ice. Thus, although continental glaciers are generally thought to be less sensitive than their maritime counterparts, a recent acceleration in shrinkage of exposed ice has taken place and we note its coincidence with a strong summer warming trend in the region initiated at the start of the 1980s. Whilst smaller and shorter glaciers have, proportionally, tended to shrink more rapidly, we find no statistically significant relationship between shrinkage and elevation characteristics, aspect or solar radiation. This is probably due to the small sample size, limited elevation range, and topographic setting of the glaciers in deep valleys-heads. Furthermore, many of the glaciers possess debris-covered termini and it is likely that the ablation of buried ice is lagging the shrinkage of exposed ice, such that a growth in the proportion of debris cover is occurring, as observed elsewhere. If recent trends continue, we hypothesise that glaciers could evolve into a type of rock glacier within the next few decades, introducing additional complexity in their response and delaying their potential demise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant desert dust deposition event occurred on Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009, where the deposited dust later appeared as a brown layer in the snow pack. An examination of dust transportation history and analysis of chemical and physical properties of the deposited dust were used to develop a new approach for high-resolution provenancing of dust deposition events recorded in snow pack using multiple independent techniques. A combination of SEVIRI red-green-blue composite imagery, MODIS atmospheric optical depth fields derived using the Deep Blue algorithm, air mass trajectories derived with HYSPLIT model and analysis of meteorological data enabled identification of dust source regions with high temporal (hours) and spatial (ca. 100 km) resolution. Dust, deposited on 5 May 2009, originated in the foothills of the Djebel Akhdar in eastern Libya where dust sources were activated by the intrusion of cold air from the Mediterranean Sea and Saharan low pressure system and transported to the Caucasus along the eastern Mediterranean coast, Syria and Turkey. Particles with an average diameter below 8 μm accounted for 90% of the measured particles in the sample with a mean of 3.58 μm, median 2.48 μm and the dominant mode of 0.60 μm. The chemical signature of this long-travelled dust was significantly different from the locally-produced dust and close to that of soils collected in a palaeolake in the source region, in concentrations of hematite and oxides of aluminium, manganese, and magnesium. Potential addition of dust from a secondary source in northern Mesopotamia introduced uncertainty in the provenancing of dust from this event. Nevertheless, the approach adopted here enables other dust horizons in the snowpack to be linked to specific dust transport events recorded in remote sensing and meteorological data archives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introgression in Festulolium is a potentially powerful tool to isolate genes for a large number of traits which differ between Festuca pratensis Huds. and Lolium perenne L. Not only are hybrids between the two species fertile, but the two genomes can be distinguished by genomic in situ hybridisation and a high frequency of recombination occurs between homoeologous chromosomes and chromosome segments. By a programme of introgression and a series of backcrosses, L. perenne lines have been produced which contain small F. pratensis substitutions. This material is a rich source of polymorphic markers targeted towards any trait carried on the F. pratensis substitution not observed in the L. perenne background. We describe here the construction of an F. pratensis BAC library, which establishes the basis of a map-based cloning strategy in L. perenne. The library contains 49,152 clones, with an average insert size of 112 kbp, providing coverage of 2.5 haploid genome equivalents. We have screened the library for eight amplified fragment length polymorphism (AFLP) derived markers known to be linked to an F. pratensis gene introgressed into L. perenne and conferring a staygreen phenotype as a consequence of a mutation in primary chlorophyll catabolism. While for four of the markers it was possible to identify bacterial artificial chromosome (BAC) clones, the other four AFLPs were too repetitive to enable reliable identification of locus-specific BACs. Moreover, when the four BACs were partially sequenced, no obvious coding regions could be identified. This contrasted to BACs identified using cDNA sequences, when multiple genes were identified on the same BAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the construction and characterisation of a BAC library from the maize flint inbred line F2, widely used in European maize breeding programs. The library contains 86,858 clones with an average insert size of approximately 90 kb, giving approximately 3.2-times genome coverage. High-efficiency BAC cloning was achieved through the use of a single size selection for the high-molecular-weight genomic DNA, and co-transformation of the ligation with yeast tRNA to optimise transformation efficiency. Characterisation of the library showed that less than 0.5% of the clones contained no inserts, while 5.52% of clones consisted of chloroplast DNA. The library was gridded onto 29 nylon filters in a double-spotted 8 × 8 array, and screened by hybridisation with a number of single-copy and gene-family probes. A 3-dimensional DNA pooling scheme was used to allow rapid PCR screening of the library based on primer pairs from simple sequence repeat (SSR) and expressed sequence tag (EST) markers. Positive clones were obtained in all hybridisation and PCR screens carried out so far. Six BAC clones, which hybridised to a portion of the cloned Rp1-D rust resistance gene, were further characterised and found to form contigs covering most of this complex resistance locus.