951 resultados para Genetic Engineering.
Resumo:
Web is a powerful hypermedia-based information retrieval mechanism that provides a user-friendly access across all major computer platforms connected over Internet. This paper demonstrates the application of Web technology when used as an educational delivery tool. It also reports on the development of a prototype electronic publishing project where Web technology was used to deliver power engineering educational resources. The resulting hyperbook will contain diverse teaching resources such as hypermedia-based modular educational units and computer simulation programs that are linked in a meaningful and structured way. The use of Web for disseminating information of this nature has many advantages that cannot possibly be achieved otherwise. PREAMBLE The continual increase of low-cost functionality available in desktop computing has opened up a new possibility in learning within a wider educational framework. This technology also is supported by enhanced features offered by new and ...
Resumo:
Probabilistic robot mapping techniques can produce high resolution, accurate maps of large indoor and outdoor environments. However, much less progress has been made towards robots using these maps to perform useful functions such as efficient navigation. This paper describes a pragmatic approach to mapping system development that considers not only the map but also the navigation functionality that the map must provide. We pursue this approach within a bio-inspired mapping context, and use esults from robot experiments in indoor and outdoor environments to demonstrate its validity. The research attempts to stimulate new research directions in the field of robot mapping with a proposal for a new approach that has the potential to lead to more complete mapping and navigation systems.
Resumo:
Balimau Putih [an Indonesian cultivar tolerant to rice tungro bacilliform virus (RTBV)] was crossed with IR64 (RTBV, susceptible variety) to produce the three filial generations F1, F2 and F3. Agroinoculation was used to introduce RTBV into the test plants. RTBV tolerance was based on the RTBV level in plants by analysis of coat protein using enzyme-linked immunosorbent assay. The level of RTBV in cv. Balimau Putih was significantly lower than that of IR64 and the susceptible control, Taichung Native 1. Mean RTBV levels of the F1, F2 and F3 populations were comparable with one another and with the average of the parents. Results indicate that there was no dominance and an additive gene action may control the expression of tolerance to RTBV. Tolerance based on the level of RTBV coat protein was highly heritable (0.67) as estimated using the mean values of F3 lines, suggesting that selection for tolerance to RTBV can be performed in the early selfing generations using the technique employed in this study. The RTBV level had a negative correlation with plant height, but positive relationship with disease index value
Resumo:
n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.
Resumo:
This paper presents a travel time prediction model and evaluates its performance and transferability. Advanced Travelers Information Systems (ATIS) are gaining more and more importance, increasing the need for accurate, timely and useful information to the travelers. Travel time information quantifies the traffic condition in an easy to understand way for the users. The proposed travel time prediction model is based on an efficient use of nearest neighbor search. The model is calibrated for optimal performance using Genetic Algorithms. Results indicate better performance by using the proposed model than the presently used naïve model.
Resumo:
This book focuses on practical applications for using adult and embryonic stem cells in the pharmaceutical development process. It emphasizes new technologies to help overcome the bottlenecks in developing stem cells as therapeutic agents. A key reference for professionals working in stem cell science, it presents the general principles and methodologies in stem cell research and covers topics such as derivitization and characterization of stem cells, stem cell culture and maintenance, stem cell engineering, applications of high-throughput screening, and stem cell genetic modification with their use for drug delivery.