942 resultados para GROUP THEORY
Resumo:
This study integrated the research streams of computer-mediated communication (CMC) and group conflict by comparing the expression of different types of conflict in CMC groups and face-to face (FTF) groups over time. The main aim of the study was to compare the cues-filtered-out approach against the social information processing theory A laboratory study was conducted with 39 groups (19 CMC and 20 FTF) in which members were required to work together over three sessions. The frequencies of task, process, and relationship conflict were analyzed. Findings supported the social information processing theory. There was more process and relationship conflict in CMC groups compared to FTF groups on Day 1. However, this difference disappeared on Days 2 and 3. There was no difference between CMC and FTF groups in the amount of task conflict expressed on any day.
Resumo:
An integrated model relating workplace rumor activity, belief, and accuracy is proposed and tested. Senior VPs of Communications from a sample of Fortune-500 corporations and CEOs of established public relations firms were surveyed regarding rumor episodes that they had experienced. Results confirmed previous research on the role of uncertainty, anxiety, and belief in rumor activity. In addition, a reduced sense of control mediated the effects of uncertainty on anxiety, and anxiety mediated the effects of importance on rumor activity. Evidence was found for the roles of group bias in how strongly a rumor is believed. Rumor activity was also implicated in the formation of more accurate rumors. The significance of these results for rumor theory and for Public Relations practitioners is presented. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
This article uses data for Nepal to test contemporary hypotheses about the remitting behaviour and associated motives of rural-to-urban migrants and to consider the likely impact of such remittances on rural development. Possibilities for inheritance, degree of family attachment, likelihood of eventual return to place of origin and family investment in the education of the migrants are found to be significant influences on levels of remittances by Nepalese migrants. However, in Nepal, remittances do not seem to result in long-term capital investment in rural areas and so may not promote long-term development of these areas.
Resumo:
Diseases and insect pests are major causes of low yields of common bean (Phaseolus vulgaris L.) in Latin America and Africa. Anthracnose, angular leaf spot and common bacterial blight are widespread foliar diseases of common bean that also infect pods and seeds. One thousand and eighty-two accessions from a common bean core collection from the primary centres of origin were investigated for reaction to these three diseases. Angular leaf spot and common bacterial blight were evaluated in the field at Santander de Quilichao, Colombia, and anthracnose was evaluated in a screenhouse in Popayan, Colombia. By using the 15-group level from a hierarchical clustering procedure, it was found that 7 groups were formed with mainly Andean common bean accessions (Andean gene pool), 7 groups with mainly Middle American accessions (Middle American gene pool), while 1 group contained mixed accessions. Consistent with the theory of co-evolution, it was generally observed that accessions from the Andean gene pool were resistant to Middle American pathogen isolates causing anthracnoxe, while the Middle American accessions were resistant to pathogen isolates from the Andes. Different combinations of resistance patterns were found, and breeders can use this information to select a specific group of accessions on the basis of their need.
Resumo:
The study reported here investigated the immunogenicity and protective potential of a lipid core peptide (LCP) construct containing a conserved region determinant of M protein, defined as peptide J8. Parenteral immunization of mice with LCP-J8 led to the induction of high-titer serum immunoglobulin G J18-specific antibodies when the construct was coadministered with complete Freund's adjuvant (CFA) or administered alone. LCP-J8 in CFA had significantly enhanced immunogenicity compared with the monomeric peptide J8 given in CFA. Moreover, LCP-J8/CFA and LCP-J8 antisera opsonized four different group A streptococcal (GAS) strains, and the antisera did not cross-react with human heart tissue proteins. These data indicate the potential of an LCP-based M protein conserved region GAS vaccine in the induction of broadly protective immune responses in the absence of a conventional adjuvant.
Resumo:
An important feature of improving lattice gas models and classical isotherms is the incorporation of a pore size dependent capacity, which has hitherto been overlooked. In this paper, we develop a model for predicting the temperature dependent variation in capacity with pore size. The model is based on the analysis of a lattice gas model using a density functional theory approach at the close packed limit. Fluid-fluid and solid-fluid interactions are modeled by the Lennard-Jones 12-6 potential and Steele's 10-4-3, potential respectively. The capacity of methane in a slit-shaped carbon pore is calculated from the characteristic parameters of the unit cell, which are extracted by minimizing the grand potential of the unit cell. The capacities predicted by the proposed model are in good agreement with those obtained from grand canonical Monte Carlo simulation, for pores that can accommodate up to three adsorbed layers. Single particle and pair distributions exhibit characteristic features that correspond to the sequence of buckling and rhombic transitions that occur as the slit pore width is increased. The model provides a useful tool to model continuous variation in the microstructure of an adsorbed phase, namely buckling and rhombic transitions, with increasing pore width. (C) 2002 American Institute of Physics.
Resumo:
The kinetics of single component adsorption on activated carbon is investigated here using a heterogeneous vacancy solution theory (VST) of adsorption. The adsorption isotherm is developed to account for the adsorbate non-ideality due to the size difference between the adsorbate molecule and the vacant site, while incorporating adsorbent heterogeneity through a pore-width-related potential energy. The transport process in the bidisperse carbon considers coupled mass transfer in both macropore and micropore phases simultaneously. Adsorbate diffusion in the micropore network is modeled through effective medium theory, thus considering pore network connectivity in the adsorbent, with the activation energy for adsorbate diffusion related to the adsorption energy, represented by the Steele 10-4-3 potential for carbons. Experimental data of five hydrocarbons, CO2 and SO2 on Ajax carbon at multiple temperatures, as well as three hydrocarbons on Norit carbon at three temperatures are first fitted by the heterogeneous VST model to obtain the isotherm parameters, followed by application of the kinetic model to uptake data on carbon particles of different sizes and geometry at various temperatures. For the hydrocarbons studied, the model can successfully correlate the experimental data for both adsorption equilibrium and kinetics. However, there is some deviation in the fit of the desorption kinetics for polar compounds such as CO2 and SO2, due to the inadequacy of the L-J potential model in this case. The significance of viscous transport in the micropores is also considered here and found to be negligible, consistent with recent molecular simulation studies. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A heterogeneous modified vacancy solution model of adsorption developed is evaluated. The new model considers the adsorption process through a mass-action law and is thermodynamically consistent, while maintaining the simplicity in calculation of multicomponent adsorption equilibria, as in the original vacancy solution theory. It incorporates the adsorbent heterogeneity through a pore-width-related potential energy, represented by Steele's 10-4-3 potential expression. The experimental data of various hydrocarbons, CO2 and SO2 on four different activated carbons - Ajax, Norit, Nuxit, and BPL - at multiple temperatures over a wide range of pressures were studied by the heterogeneous modified VST model to obtain the isotherm parameters and micropore-size distribution of carbons. The model successfully correlates the single-component adsorption equilibrium data for all compounds studied on various carbons. The fitting results for the vacancy occupancy parameter are consistent with the pressure change on different carbons, and the effect of pore heterogeneity is important in adsorption at elevated pressure. It predicts binary adsorption equilibria better than the IAST scheme, reflecting the significance of molecular size nonideality.
Resumo:
Density functional theory for adsorption in carbons is adapted here to incorporate a random distribution of pore wall thickness in the solid, and it is shown that the mean pore wall thickness is intimately related to the pore size distribution characteristics. For typical carbons the pore walls are estimated to comprise only about two graphene layers, and application of the modified density functional theory approach shows that the commonly used assumption of infinitely thick walls can severely affect the results for adsorption in small pores under both supercritical and subcritical conditions. Under supercritical conditions the Henry's law coefficient is overpredicted by as much as a factor of 2, while under subcritical conditions pore wall heterogeneity appears to modify transitions in small pores into a sequence of smaller ones corresponding to pores with different wall thicknesses. The results suggest the need to improve current pore size distrubution analysis methods to allow for pore wall heterogeneity. The density functional theory is further extended here to allow for interpore adsorbate interactions, and it appears that these interaction are negligible for small molecules such as nitrogen but significant for more strongly interacting heavier molecules such as butane, for which the traditional independent pore model may not be adequate.
Resumo:
A thermodynamic approach is developed in this paper to describe the behavior of a subcritical fluid in the neighborhood of vapor-liquid interface and close to a graphite surface. The fluid is modeled as a system of parallel molecular layers. The Helmholtz free energy of the fluid is expressed as the sum of the intrinsic Helmholtz free energies of separate layers and the potential energy of their mutual interactions calculated by the 10-4 potential. This Helmholtz free energy is described by an equation of state (such as the Bender or Peng-Robinson equation), which allows us a convenient means to obtain the intrinsic Helmholtz free energy of each molecular layer as a function of its two-dimensional density. All molecular layers of the bulk fluid are in mechanical equilibrium corresponding to the minimum of the total potential energy. In the case of adsorption the external potential exerted by the graphite layers is added to the free energy. The state of the interface zone between the liquid and the vapor phases or the state of the adsorbed phase is determined by the minimum of the grand potential. In the case of phase equilibrium the approach leads to the distribution of density and pressure over the transition zone. The interrelation between the collision diameter and the potential well depth was determined by the surface tension. It was shown that the distance between neighboring molecular layers substantially changes in the vapor-liquid transition zone and in the adsorbed phase with loading. The approach is considered in this paper for the case of adsorption of argon and nitrogen on carbon black. In both cases an excellent agreement with the experimental data was achieved without additional assumptions and fitting parameters, except for the fluid-solid potential well depth. The approach has far-reaching consequences and can be readily extended to the model of adsorption in slit pores of carbonaceous materials and to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).