920 resultados para GRAVITY THEORIES
Resumo:
Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. To prove this, we consider an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea. In particular, we deployed WASS at the oceanographic platform Acqua Alta, off the Venice coast, Italy. Three experimental studies were performed, and the overlapping field of view of the acquired stereo images covered an area of approximately 1100 m2. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics that agree well with theoretical models. From the observed wavenumber-frequency spectrum one can also predict the vertical profile of the current flow underneath the wave surface. Finally, future improvements of WASS and applications are discussed.
Resumo:
A nonlinear analysis of an elastic tube subjected to gravity forces and buoyancy pressure is carried out. An update lagrangian formulation is used. The structural analysis efficiency in terms of computer time and accuracy, has been improved when load stiffness matrices have been introduced. In this way the follower forces characteristics such as their intensity and direction changes can be well represented. A sensitivity study of different involved variables on the final deformed pipeline shape is carried out.
Resumo:
In this paper, a set of design parameters, such as the slopes of upstream and downstream faces of the dam, radius of the upper arch, width of the dam at the top level and height of the vertical upper part of the dam, are given as function of the valley characteristics when the dam is situated, such as its geometry and its geotechnical properties. These tables have been obtained using a regression of the design parameters of an arch-gravity dam with a minimum concrete volume, placed in a large number of valleys with different characteristics and properties. Elasticites for these design parameters are also discussed.
Resumo:
In this paper the influence of gravity on the solidification of a drop formed at the end of a rod is analyzed. Although similar studies (but ignoring gravity effects) already exist, a theoretical analysis including gravity effects allows one to improve the experimental procedure to measure on Earth relevant properties of crystals (mainly the receding contact angle <£,) which are of importance in shaped crystal growth processes. One of the main results here obtained are the shapes of the sohdified drops, which are strongly dependent on the value of <#>,. Therefore, fitting theoretical shapes to experimental ones is a wav to perform accurate measurements of <^.
Resumo:
This paper presents a gravimetric study (based on 382 gravimetric stations in an area about 32 km2) of a nearly flat basin: the Low Andarax valley. This alluvial basin, close to its river mouth, is located in the extreme south of the province of Almería and coincides with one of the existing depressions in the Betic Cordillera. The paper presents new methodological work to adapt a published inversion approach (GROWTH method) to the case of an alluvial valley (sedimentary stratification, with density increase downward). The adjusted 3D density model reveals several features in the topography of the discontinuity layers between the calcareous basement (2,700 kg/m3) and two sedimentary layers (2,400 and 2,250 kg/m3). We interpret several low density alignments as corresponding to SE faults striking about N140?145°E. Some detected basement elevations (such as the one, previously known by boreholes, in Viator village) are apparently connected with the fault pattern. The outcomes of this work are: (1) new gravimetric data, (2) new methodological options, and (3) the resulting structural conclusions.
Resumo:
In this work, we use large eddy simulations (LES) and Lagrangian tracking to study the influence of gravity on particle statistics in a fully developed turbulent upward/downward flow in a vertical channel and pipe at matched Kàrmàn number. Only drag and gravity are considered in the equation of motion for solid particles, which are assumed to have no influence on the flow field. Particle interactions with the wall are fully elastic. Our findings obtained from the particle statistics confirm that: (i) the gravity seems to modify both the quantitative and qualitative behavior of the particle distribution and statistics of the particle velocity in wall normal direction; (ii) however, only the quantitative behavior of velocity particle in streamwise direction and the root mean square of velocity components is modified; (iii) the statistics of fluid and particles coincide very well near the wall in channel and pipe flow with equal Kàrmàn number; (iv) pipe curvature seems to have quantitative and qualitative influence on the particle velocity and on the particle concentration in wall normal direction.
Resumo:
We develop general closed-form expressions for the mutual gravitational potential, resultant and torque acting upon a rigid tethered system moving in a non-uniform gravity field produced by an attracting body with revolution symmetry, such that an arbitrary number of zonal harmonics is considered. The final expressions are series expansion in two small parameters related to the reference radius of the primary and the length of the tether, respectively, each of which are scaled by the mutual distance between their centers of mass. A few numerical experiments are performed to study the convergence behavior of the final expressions, and conclude that for high precision applications it might be necessary to take into account additional perturbation terms, which come from the mutual Two-Body interaction.
Resumo:
A novel culture system for mammalian cells was used to investigate division orientations in populations of Chinese hamster ovary cells and the influence of gravity on the positioning of division axes. The cells were tethered to adhesive sites, smaller in diameter than a newborn cell, distributed over a nonadhesive substrate positioned vertically. The cells grew and divided while attached to the sites, and the angles and directions of elongation during anaphase, projected in the vertical plane, were found to be random with respect to gravity. However, consecutive divisions of individual cells were generally along the same axis or at 90° to the previous division, with equal probability. Thus, successive divisions were restricted to orthogonal planes, but the choice of plane appeared to be random, unlike the ordered sequence of cleavage orientations seen during early embryo development.
Resumo:
There are several classes of homogeneous Fermi systems that are characterized by the topology of the energy spectrum of fermionic quasiparticles: (i) gapless systems with a Fermi surface, (ii) systems with a gap in their spectrum, (iii) gapless systems with topologically stable point nodes (Fermi points), and (iv) gapless systems with topologically unstable lines of nodes (Fermi lines). Superfluid 3He-A and electroweak vacuum belong to the universality class 3. The fermionic quasiparticles (particles) in this class are chiral: they are left-handed or right-handed. The collective bosonic modes of systems of class 3 are the effective gauge and gravitational fields. The great advantage of superfluid 3He-A is that we can perform experiments by using this condensed matter and thereby simulate many phenomena in high energy physics, including axial anomaly, baryoproduction, and magnetogenesis. 3He-A textures induce a nontrivial effective metrics of the space, where the free quasiparticles move along geodesics. With 3He-A one can simulate event horizons, Hawking radiation, rotating vacuum, etc. High-temperature superconductors are believed to belong to class 4. They have gapless fermionic quasiparticles with a “relativistic” spectrum close to gap nodes, which allows application of ideas developed for superfluid 3He-A.
Resumo:
Although weightlessness is known to affect living cells, the manner by which this occurs is unknown. Some reaction-diffusion processes have been theoretically predicted as being gravity-dependent. Microtubules, a major constituent of the cellular cytoskeleton, self-organize in vitro by way of reaction-diffusion processes. To investigate how self-organization depends on gravity, microtubules were assembled under low gravity conditions produced during space flight. Contrary to the samples formed on an in-flight 1 × g centrifuge, the samples prepared in microgravity showed almost no self-organization and were locally disordered.
Resumo:
Increases in plasma cholesterol are associated with progressive increases in the risk of atherosclerotic cardiovascular disease. In humans plasma cholesterol is contained primarily in apolipoprotein B-based low density lipoprotein (LDL). Cells stop making the high-affinity receptor responsible for LDL removal as they become cholesterol replete; this slows removal of LDL from plasma and elevates plasma LDL. As a result of this delayed uptake, hypercholesterolemic individuals not only have more LDL but have significantly older LDL. Oxidative modification of LDL enhances their atherogenicity. This study sought to determine whether increased time spent in circulation, or aging, by lipoprotein particles altered their susceptibility to oxidative modification. Controlled synchronous production of distinctive apolipoprotein B lipoproteins (yolk-specific very low density lipoproteins; VLDLy) with a single estrogen injection into young turkeys was used to model LDL aging in vivo. VLDLy remained in circulation for at least 10 days. Susceptibility to oxidation in vitro was highly dependent on lipoprotein age in vivo. Oxidation, measured as hexanal release from n-6 fatty acids in VLDLy, increased from 13.3 +/- 5.5 nmol of 2-day-old VLDLy per ml, to 108 +/- 17 nmol of 7-day-old VLDLy per ml. Oxidative instability was not due to tocopherol depletion or conversion to a more unsaturated fatty acid composition. These findings establish mathematically describable linkages between the variables of LDL concentration and LDL oxidation. The proposed mathematical models suggest a unified investigative approach to determine the mechanisms for acceleration of atherosclerotic cardiovascular disease risk as plasma cholesterol rises.
Resumo:
A correspondência AdS/CFT é uma notável ferramenta no estudo de teorias de gauge fortemente acopladas que podem ser mapeadas em uma descrição gravitacional dual fracamente acoplada. A correspondência é melhor entendida no limite em que ambos $N$ e $\\lambda$, o rank do grupo de gauge e o acoplamento de \'t Hooft da teoria de gauge, respectivamente, são infinitos. Levar em consideração interações com termos de curvatura de ordem superior nos permite considerar correções de $\\lambda$ finito. Por exemplo, a primeira correção de acoplamento finito para supergravidade tipo IIB surge como um termo de curvatura com forma esquemática $\\alpha\'^3 R^4$. Neste trabalho investigamos correções de curvatura no contexto da gravidade de Lovelock, que é um cenário simples para investigar tais correções pois as suas equações de movimento ainda são de segunda ordem em derivadas. Esse cenário também é particularmente interessante do ponto de vista da correspondência AdS/CFT devido a sua grande classe de soluções de buracos negros assintoticamente AdS. Consideramos um sistema de gravidade AdS-axion-dilaton em cinco dimensões com um termo de Gauss-Bonnet e encontramos uma solução das equações de movimento, o que corresponde a uma black brane exibindo uma anisotropia espacial, onde a fonte da anisotropia é um campo escalar linear em uma das coordenadas espaciais. Estudamos suas propriedades termodinâmicas e realizamos a renormalização holográfica usando o método de Hamilton-Jacobi. Finalmente, usamos a solução obtida como dual gravitacional de um plasma anisotrópico fortemente acoplado com duas cargas centrais independentes, $a eq c$. Calculamos vários observáveis relevantes para o estudo do plasma, a saber, a viscosidade de cisalhamento sobre densidade de entropia, a força de arrasto, o parâmetro de jet quenching, o potencial entre um par quark-antiquark e a taxa de produção de fótons.
Resumo:
The current study tested two competing models of Attention-Deficit/Hyperactivity Disorder (AD/HD), the inhibition and state regulation theories, by conducting fine-grained analyses of the Stop-Signal Task and another putative measure of behavioral inhibition, the Gordon Continuous Performance Test (G-CPT), in a large sample of children and adolescents. The inhibition theory posits that performance on these tasks reflects increased difficulties for AD/HD participants to inhibit prepotent responses. The model predicts that putative stop-signal reaction time (SSRT) group differences on the Stop-Signal Task will be primarily related to AD/HD participants requiring more warning than control participants to inhibit to the stop-signal and emphasizes the relative importance of commission errors, particularly "impulsive" type commissions, over other error types on the G-CPT. The state regulation theory, on the other hand, proposes response variability due to difficulties maintaining an optimal state of arousal as the primary deficit in AD/HD. This model predicts that SSRT differences will be more attributable to slower and/or more variable reaction time (RT) in the AD/HD group, as opposed to reflecting inhibitory deficits. State regulation assumptions also emphasize the relative importance of omission errors and "slow processing" type commissions over other error types on the G-CPT. Overall, results of Stop-Signal Task analyses were more supportive of state regulation predictions and showed that greater response variability (i.e., SDRT) in the AD/HD group was not reducible to slow mean reaction time (MRT) and that response variability made a larger contribution to increased SSRT in the AD/HD group than inhibitory processes. Examined further, ex-Gaussian analyses of Stop-Signal Task go-trial RT distributions revealed that increased variability in the AD/HD group was not due solely to a few excessively long RTs in the tail of the AD/HD distribution (i.e., tau), but rather indicated the importance of response variability throughout AD/HD group performance on the Stop-Signal Task, as well as the notable sensitivity of ex-Gaussian analyses to variability in data screening procedures. Results of G-CPT analyses indicated some support for the inhibition model, although error type analyses failed to further differentiate the theories. Finally, inclusion of primary variables of interest in exploratory factor analysis with other neurocognitive predictors of AD/HD indicated response variability as a separable construct and further supported its role in Stop-Signal Task performance. Response variability did not, however, make a unique contribution to the prediction of AD/HD symptoms beyond measures of motor processing speed in multiple deficit regression analyses. Results have implications for the interpretation of the processes reflected in widely-used variables in the AD/HD literature, as well as for the theoretical understanding of AD/HD.