848 resultados para GLUCOSE METABOLIC-RATE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To compare the heart-rate monitoring with the doubly labelled water (2H2(18)O) method to estimate total daily energy expenditure in obese and non-obese children. DESIGN: Cross sectional study of obese and normal weight children. SUBJECTS: 13 prepubertal children: six obese (4M, 2F, 9.1 +/- 1.5 years, 47.3 +/- 9.7 kg) and seven non-obese (3M, 4F, 9.3 +/- 0.6 years, 31.8 +/- 3.2 kg). MEASUREMENTS: Total daily energy expenditure was assessed by means of the doubly labelled water method (TEEDLW) and of heart-rate monitoring (TEEHR). RESULTS: TEEHR was significantly (P < 0.05) higher than TEEDLW in obese children (9.47 +/- 0.84 MJ/d vs 8.99 +/- 0.63 MJ/d) whereas it was not different in non-obese children (8.43 +/- 2.02 MJ/d vs 8.42 +/- 2.30 MJ/d, P = NS). The difference of TEE assessed by HR monitoring in the obese group averaged 6.2 +/- 4.7%. At the individual level, the degree of agreement (difference between TEEHR and TEEDLW +/- 2s.d.) was low both in obese (-0.36, 1.32 MJ/d) and in non-obese children (-1.30, 1.34 MJ/d). At the group level, the agreement between the two methods was good in nonobese children (95% c.i. for the bias:-0.59, 0.63 MJ/d) but not in obese children (0.04, 0.92 MJ/d). Duration of sleep and energy expenditure during resting and physical activity were not significantly different in the two groups. Patterns of heart-rate (or derived energy expenditure) during the day-time were similar in obese and non-obese children. CONCLUSION: The HR monitoring technique provides an estimation of TEE close to that assessed by the DLW method in non-obese prepubertal children. In comparison with DLW, the HR monitoring method yields a greater TEE value in obese children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the inclusion of sodium citrate and sodium bicarbonate in the diet of lactating Jersey cows, and its effects on the metabolic attributes, productivity and stability of milk. We evaluated urinary pH, levels of glucose and urea in blood, body weight, body condition score, milk yield, milk stability (ethanol test), and milk physicochemical properties of 17 cows fed diets containing sodium citrate (100 g per cow per day), sodium bicarbonate (40 g per cow per day) or no additives. Assessments were made at the 28th and 44th days. Supply of sodium citrate or bicarbonate has no influence on the metabolic attributes, productivity, body weight, and body condition score of the cows, neither on the composition and stability of milk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been much concern regarding the role of dietary fructose in the development of metabolic diseases. This concern arises from the continuous increase in fructose (and total added caloric sweeteners consumption) in recent decades, and from the increased use of high-fructose corn syrup (HFCS) as a sweetener. A large body of evidence shows that a high-fructose diet leads to the development of obesity, diabetes, and dyslipidemia in rodents. In humans, fructose has long been known to increase plasma triglyceride concentrations. In addition, when ingested in large amounts as part of a hypercaloric diet, it can cause hepatic insulin resistance, increased total and visceral fat mass, and accumulation of ectopic fat in the liver and skeletal muscle. These early effects may be instrumental in causing, in the long run, the development of the metabolic syndrome. There is however only limited evidence that fructose per se, when consumed in moderate amounts, has deleterious effects. Several effects of a high-fructose diet in humans can be observed with high-fat or high-glucose diets as well, suggesting that an excess caloric intake may be the main factor involved in the development of the metabolic syndrome. The major source of fructose in our diet is with sweetened beverages (and with other products in which caloric sweeteners have been added). The progressive replacement of sucrose by HFCS is however unlikely to be directly involved in the epidemy of metabolic disease, because HFCS appears to have basically the same metabolic effects as sucrose. Consumption of sweetened beverages is however clearly associated with excess calorie intake, and an increased risk of diabetes and cardiovascular diseases through an increase in body weight. This has led to the recommendation to limit the daily intake of sugar calories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼ 5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on this nutrient as a source of metabolic energy. This homeostatic process is controlled by hormones, mainly glucagon and insulin, and by autonomic nervous activities that control the metabolic state of liver, muscle and fat tissue but also the secretory activity of the endocrine pancreas. Activation or inhibition of the sympathetic or parasympathetic branches of the autonomic nervous systems are controlled by glucose-excited or glucose-inhibited neurons located at different anatomical sites, mainly in the brainstem and the hypothalamus. Activation of these neurons by hyper- or hypoglycemia represents a critical aspect of the control of glucose homeostasis, and loss of glucose sensing by these cells as well as by pancreatic β-cells is a hallmark of type 2 diabetes. In this article, aspects of the brain-endocrine pancreas axis are reviewed, highlighting the importance of central glucose sensing in the control of counterregulation to hypoglycemia but also mentioning the role of the neural control in β-cell mass and function. Overall, the conclusions of these studies is that impaired glucose homeostasis, such as associated with type 2 diabetes, but also defective counterregulation to hypoglycemia, may be caused by initial defects in glucose sensing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Les études épidémiologiques indiquent que la restriction intra-utérine confère un risque accru de développement de diabète de type 2 au cours de la vie. Certaines études ont documenté la présence d'une résistance à l'insuline chez les jeunes adultes ou les adolescents nés petits pour l'âge gestationnel. Comme la plupart des études ont impliqués des individus post-pubères et comme la puberté influence de manière marquée le métabolisme énergétique, nous avons évalué le devenir du glucose administré oralement dans un groupe incluant essentiellement des enfants pré-pubères ou en début de puberté avec restriction intra-utérine, et chez des enfants matchés pour l'âge et pour le poids. Tous les enfants ont eu une évaluation de leur composition corporelle par mesure des plis cutanés. Ils ont ensuite été étudiés dans des conditions standardisées et ont reçu 4 charges consécutives orales de glucose à raison de 180 mg/kg de poids corporel jusqu'à atteindre un état d'équilibre relatif. La dépense énergétique et l'oxydation des substrats ont été évaluées durant la quatrième heure par calorimétrie indirecte. Comparativement avec les enfants matchés pour l'âge et le poids, les enfants nés petits pour l'âge gestationnel avaient une plus petite stature. Leur dépense énergétique n'était pas significativement abaissée, mais leur oxydation du glucose était plus basse. Ces résultats indiquent que des altérations métaboliques sont présentes précocement chez les enfants nés petits pour l'âge gestationnel, et qu'elles sont possiblement reliées à des altérations de la composition corporelle. Abstract: Epidemiological studies indicate that intrauterine growth restriction confers an increased risk of developing type 2 diabetes mellitus in subsequent life. Several studies have further documented the presence of insulin resistance in young adults or adolescent children born small for gestational age. Since most studies addressed postpubertal individuals, and since puberty markedly affects energy metabolism, we evaluated the disposal of oral glucose in a group including mainly prepubertal and early pubertal children with intrauterine growth restriction and in healthy age- and weight-matched control children. All children had an evaluation of their body composition by skinfold thickness measurements. They were then studied in standardized conditions and received 4 consecutive hourly loads of 180 mg glucose/kg body weight to reach a near steady state. Energy expenditure and substrate oxidation were evaluated during the fourth hour by indirect calorimetry. Compared to both age- and weight-matched children, children born small for gestational age had lower stature. Their energy expenditure was not significantly decreased, but they had lower glucose oxidation rates. These results indicate that metabolic alterations are present early in children born small for gestational age, and are possibly related to alterations of body composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: This special commentary addresses recent clinical reviews regarding appropriate nutrition and metabolic support in the critical care setting. RECENT FINDINGS: There are divergent approaches between North America and Europe for the use of early nutrition support and combined enteral nutrition and parenteral nutrition support possibly due to the commercial availability of specific parenteral nutrients. The advent of intensive insulin therapy has changed the landscape of metabolic support in the intensive care unit, and previous notions about infective risk of parenteral nutrition will need to be re-addressed. Patients with brain failure may benefit from an intensive insulin therapy with a blood glucose target that is higher than that used in patients without brain failure. Patients with heart failure may benefit from the addition of nutritional pharmacology that targets proximate oxidative pathophysiological pathways. Intradialytic parenteral nutrition may be viewed as another form of supplemental parenteral nutrition when enteral nutrition is insufficient in patients on hemodialysis in the intensive care unit. SUMMARY: It is proposed that intensive metabolic support be routinely implemented in the intensive care unit based on the following steps: intensive insulin therapy with an appropriate blood glucose target, nutrition risk assessment, early and if needed combined enteral nutrition and parenteral nutrition to target 20-25 kcal/kg/day and 1.2-1.5 g protein/kg/day, and nutritional and metabolic monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin secretion from pancreatic beta cells is stimulated by glucose metabolism. However, the relative importance of metabolizing glucose via mitochondrial oxidative phosphorylation versus glycolysis for insulin secretion remains unclear. von Hippel-Lindau (VHL) tumor suppressor protein, pVHL, negatively regulates hypoxia-inducible factor HIF1alpha, a transcription factor implicated in promoting a glycolytic form of metabolism. Here we report a central role for the pVHL-HIF1alpha pathway in the control of beta-cell glucose utilization, insulin secretion, and glucose homeostasis. Conditional inactivation of Vhlh in beta cells promoted a diversion of glucose away from mitochondria into lactate production, causing cells to produce high levels of glycolytically derived ATP and to secrete elevated levels of insulin at low glucose concentrations. Vhlh-deficient mice exhibited diminished glucose-stimulated changes in cytoplasmic Ca(2+) concentration, electrical activity, and insulin secretion, which culminate in impaired systemic glucose tolerance. Importantly, combined deletion of Vhlh and Hif1alpha rescued these phenotypes, implying that they are the result of HIF1alpha activation. Together, these results identify pVHL and HIF1alpha as key regulators of insulin secretion from pancreatic beta cells. They further suggest that changes in the metabolic strategy of glucose metabolism in beta cells have profound effects on whole-body glucose homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among adolescents, overweight, obesity and metabolic syndrome are rapidly increasing in recent years as a consequence of unhealthy palatable diets. Animal models of diet-induced obesity have been developed, but little is known about the behavioural patterns produced by the consumption of such diets. The aim of the present study was to determine the behavioural and biochemical effects of a cafeteria diet fed to juvenile male and female rats, as well as to evaluate the possible recovery from these effects by administering standard feeding during the last week of the study. Two groups of male and female rats were fed with either a standard chow diet (ST) or a cafeteria (CAF) diet from weaning and for 8 weeks. A third group of males (CAF withdrawal) was fed with the CAF diet for 7 weeks and the ST in the 8th week. Both males and females developed metabolic syndrome as a consequence of the CAF feeding, showing overweight, higher adiposity and liver weight, increased plasma levels of glucose, insulin and triglycerides, as well as insulin resistance, in comparison with their respective controls. The CAF diet reduced motor activity in all behavioural tests, enhanced exploration, reduced anxiety-like behaviour and increased social interaction; this last effect was more pronounced in females than in males. When compared to animals only fed with a CAF diet, CAF withdrawal increased anxiety in the open field, slightly decreased body weight, and completely recovered the liver weight, insulin sensitivity and the standard levels of glucose, insulin and triglycerides in plasma. In conclusion, a CAF diet fed to young animals for 8 weeks induced obesity and metabolic syndrome, and produced robust behavioural changes in young adult rats, whereas CAF withdrawal in the last week modestly increased anxiety, reversed the metabolic alterations and partially reduced overweight.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary cultures of gilthead sea bream myocytes were performed in order to examine the relative metabolic function of insulin compared with IGF-I and IGF-II (insulin-like growth factors, IGFs) at different stages in the cell culture. In these cells, the in vitro effects of insulin and IGFs on 2-deoxyglucose (2-DG) and L-alanine uptake were studied in both myocytes (day 4) and small myotubes (day 9). 2-DG uptake in gilthead sea bream muscle cells was increased in the presence of insulin and IGFs in a time dependent manner and along with muscle cell differentiation. On the contrary, L-alanine uptake was also stimulated by insulin and IGFs but showed an inverse pattern, being the uptake higher in small myocytes than in large myotubes. The results of preincubation with inhibitors (PD-98059, wortmannin, and cytochalasin B) on 2-DG uptake indicated that insulin and IGFs stimulate glucose uptake through the same mechanisms, and evidenced that mitogenesis activator protein kinase (MAPK) and PI3K-Akt transduction pathways mediate the metabolic function of these peptides. In the same way, we observed that GLUT4 protein synthesis was stimulated in the presence of insulin and IGFs in gilthead sea bream muscle cells in a different manner at days 4 or 9 of the culture. In summary we describe here, for the first time, the effects of insulin and IGFs on 2-DG and L-alanine uptake in primary culture of gilthead sea bream muscle cells. We show that both MAPK and PI3K-Akt transduction pathways are needed in order to control insulin and IGFs actions in these cells. Moreover, changes in glucose uptake can be explained by the action of the GLUT4 transporter, which is stimulated in the presence of insulin and IGFs throughout the cell culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Previous studies suggest that arginine vasopressin may have a role in metabolic syndrome (MetS) and diabetes by altering liver glycogenolysis, insulin, and glucagon secretion and pituitary ACTH release. We tested whether plasma copeptin, the stable C-terminal fragment of arginine vasopressin prohormone, was associated with insulin resistance and MetS in a Swiss population-based study. DESIGN AND METHOD: We analyzed data from the population-based Swiss Kidney Project on Genes in Hypertension. Copeptin was assessed by an immunoluminometric assay. Insulin resistance was derived from the HOMA model and calculated as follows: (FPI x FPG)/22.5, where FPI is fasting plasma insulin concentration (mU/L) and FPG fasting plasma glucose (mmol/L). Subjects were classified as having the MetS according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Mixed multivariate linear regression models were built to explore the association of insulin resistance with copeptin. In addition, multivariate logistic regression models were built to explore the association between MetS and copeptin. In the two analyses, adjustment was done for age, gender, center, tobacco and alcohol consumption, socioeconomic status, physical activity, intake of fruits and vegetables and 24 h urine flow rate. Copeptin was log-transformed for the analyses. RESULTS: Among the 1,089 subjects included in this analysis, 47% were male. Mean (SD) age and body mass index were 47.4 (17.6) years 25.0 (4.5) kg/m2. The prevalence of MetS was 10.5%. HOMA-IR was higher in men (median 1.3, IQR 0.7-2.1) than in women (median 1.0, IQR 0.5-1.6,P < 0.0001). Plasma copeptin was higher in men (median 5.2, IQR 3.7-7.8 pmol/L) than in women (median 3.0, IQR 2.2-4.3 pmol/L), P < 0.0001. HOMA-IR was positively associated with log-copeptin after full adjustment (β (95% CI) 0.19 (0.09-0.29), P < 0.001). MetS was not associated with copeptin after full adjustment (P = 0.92). CONCLUSIONS: Insulin resistance, but not MetS, was associated with higher copeptin levels. Further studies should examine whether modifying pharmacologically the arginine vasopressin system might improve insulin resistance, thereby providing insight into the causal nature of this association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weight gain is a major health problem among psychiatric populations. It implicates several receptors and hormones involved in energy balance and metabolism. Phosphoenolpyruvate carboxykinase 1 is a rate-controlling enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis and has been related to obesity and diabetes phenotypes in animals and humans. The aim of this study was to investigate the association of phosphoenolpyruvate carboxykinase 1 polymorphisms with metabolic traits in psychiatric patients treated with psychotropic drugs inducing weight gain and in general population samples. One polymorphism (rs11552145G > A) significantly associated with body mass index in the psychiatric discovery sample (n = 478) was replicated in 2 other psychiatric samples (n1 = 168, n2 = 188), with AA-genotype carriers having lower body mass index as compared to G-allele carriers. Stronger associations were found among women younger than 45 years carrying AA-genotype as compared to G-allele carriers (-2.25 kg/m, n = 151, P = 0.009) and in the discovery sample (-2.20 kg/m, n = 423, P = 0.0004). In the discovery sample for which metabolic parameters were available, AA-genotype showed lower waist circumference (-6.86 cm, P = 0.008) and triglycerides levels (-5.58 mg/100 mL, P < 0.002) when compared to G-allele carriers. Finally, waist-to-hip ratio was associated with rs6070157 (proxy of rs11552145, r = 0.99) in a population-based sample (N = 123,865, P = 0.022). Our results suggest an association of rs11552145G > A polymorphism with metabolic-related traits, especially in psychiatric populations and in women younger than 45 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weight gain is a major health problem among psychiatric populations. It implicates several receptors and hormones involved in energy balance and metabolism. Phosphoenolpyruvate carboxykinase 1 is a rate-controlling enzyme involved in gluconeogenesis, glyceroneogenesis and cataplerosis and has been related to obesity and diabetes phenotypes in animals and humans. The aim of this study was to investigate the association of phosphoenolpyruvate carboxykinase 1 polymorphisms with metabolic traits in psychiatric patients treated with psychotropic drugs inducing weight gain and in general population samples. One polymorphism (rs11552145G > A) significantly associated with body mass index in the psychiatric discovery sample (n = 478) was replicated in 2 other psychiatric samples (n1 = 168, n2 = 188), with AA-genotype carriers having lower body mass index as compared to G-allele carriers. Stronger associations were found among women younger than 45 years carrying AA-genotype as compared to G-allele carriers (-2.25 kg/m, n = 151, P = 0.009) and in the discovery sample (-2.20 kg/m, n = 423, P = 0.0004). In the discovery sample for which metabolic parameters were available, AA-genotype showed lower waist circumference (-6.86 cm, P = 0.008) and triglycerides levels (-5.58 mg/100 mL, P < 0.002) when compared to G-allele carriers. Finally, waist-to-hip ratio was associated with rs6070157 (proxy of rs11552145, r = 0.99) in a population-based sample (N = 123,865, P = 0.022). Our results suggest an association of rs11552145G > A polymorphism with metabolic-related traits, especially in psychiatric populations and in women younger than 45 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose homeostasis as well as homeostatic and hedonic control of feeding is regulated by hormonal, neuronal, and nutrient-related cues. Glucose, besides its role as a source of metabolic energy, is an important signal controlling hormone secretion and neuronal activity, hence contributing to whole-body metabolic integration in coordination with feeding control. Brain glucose sensing plays a key, but insufficiently explored, role in these metabolic and behavioral controls, which when deregulated may contribute to the development of obesity and diabetes. The recent introduction of innovative transgenic, pharmacogenetic, and optogenetic techniques allows unprecedented analysis of the complexity of central glucose sensing at the molecular, cellular, and neuronal circuit levels, which will lead to a new understanding of the pathogenesis of metabolic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Globally, Africans and African Americans experience a disproportionate burden of type 2 diabetes, compared to other race and ethnic groups. The aim of the study was to examine the association of plasma glucose with indices of glucose metabolism in young adults of African origin from 5 different countries. METHODS: We identified participants from the Modeling the Epidemiologic Transition Study, an international study of weight change and cardiovascular disease (CVD) risk in five populations of African origin: USA (US), Jamaica, Ghana, South Africa, and Seychelles. For the current study, we included 667 participants (34.8 ± 6.3 years), with measures of plasma glucose, insulin, leptin, and adiponectin, as well as moderate and vigorous physical activity (MVPA, minutes/day [min/day]), daily sedentary time (min/day), anthropometrics, and body composition. RESULTS: Among the 282 men, body mass index (BMI) ranged from 22.1 to 29.6 kg/m(2) in men and from 25.8 to 34.8 kg/m(2) in 385 women. MVPA ranged from 26.2 to 47.1 min/day in men, and from 14.3 to 27.3 min/day in women and correlated with adiposity (BMI, waist size, and % body fat) only among US males after controlling for age. Plasma glucose ranged from 4.6 ± 0.8 mmol/L in the South African men to 5.8 mmol/L US men, while the overall prevalence for diabetes was very low, except in the US men and women (6.7 and 12 %, respectively). Using multivariate linear regression, glucose was associated with BMI, age, sex, smoking hypertension, daily sedentary time but not daily MVPA. CONCLUSION: Obesity, metabolic risk, and other potential determinants vary significantly between populations at differing stages of the epidemiologic transition, requiring tailored public health policies to address local population characteristics.