931 resultados para GLASS-TRANSITION TEMPERATURE
Resumo:
Copolymers based on monomers phenolphthalein (PP)/4,4'-thiodiphenol (Bis-T)/4,4'-dichlorodiphenylsulfone (DCDPS) were prepared by a route involving the toluene, N-methyl-2-pyrrolidone and anhydrous potassium carbonate synthesis. The range of optimum reaction temperature was between 185 and 195 degrees C. The copolymers were characterized by C-13 NMR, differential scanning calorimetry (DSC) and torsion braid analysis. It was found that all of the copolymers were random and homogeneous and their glass transition temperatures (T-g) decreased linearly with an increase of Bis-T contents in the copolymers. The thermal stability determined by thermogravimetry analysis in air atmosphere indicated that the copolymer had better resistance to thermo-oxidative degradation. Dynamic mechanical measurement showed that (PP/Bis-T) PES copolymers containing 0-50 mol% of Bis-T components had two secondary relaxations. (C) 1998 Elsevier Science Ltd. All rights reserved.
Dependence of superconducting temperature on chemical bond parameters in YBa2Cu3O6+delta (delta=0-1)
Resumo:
The chemical bond parameters, that is ionicities and average energy gaps, for all types of chemical bonds in YBa2Cu3O6+delta have been investigated with variation of oxygen content delta (delta = 0.0, 0.35, 0.45, 0.58, 0.64, 0.73, 0.78, 0.81, 0.95, 1.00). The theory used is the complex crystal chemical bond theory, which is the development of P-V-L theory. The two plateaus near 90 K and 60 K in superconducting transition temperatures, and the disappearance of superconductivity with the change of oxygen content, were reasonably explained by chemical bond parameters. The results also showed that the Cu-O chains play a vital role in the transition from non-superconductors to superconductors, and the highest transition temperature occurred when the plane-chain reached a coupling state. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A series of novel aromatic diamines (1-3) containing kinked cyclohexylidene moieties was synthesized by a reaction of excess aniline and corresponding methyl-substituted cyclohexanone derivatives. The structures of (1-3) were identifield by H-1 NMR, C-13 NMR, and FT-IR. The polymers were synthesized from the obtained diamines and various aromatic dianhydrides by the conventional polycondensation reaction followed by chemical imidization as well as high-temperature one-step polymerization. The inherent viscosities and weight-average molecular weights of the resulting polyimides were in the ranges of 0.55-1.58 dL/g and (7.4-15.2) x 10(4) g/mol, respectively. The prepared polyimides showed excellent thermal stabilities and good solubility. All polymers were readily soluble in common organic solvents such as tetrahydrofuran, chloroform, tetrachloroethane, etc., and the glass transition temperatures were observed at 290-372 degrees C.
Resumo:
Poly(ether ether ketone)/poly(ether diphenyl ether ketone) blend containing 30 wt% PEDEK was used to investigate the melting behaviour of immiscible PEEK/PEDEK blends. The results measured from differential scanning calorimetry (d.s.c.) and wide-angle X-ray diffraction (WAXD) showed that immiscible PEEK/PEDEK blends isothermally crystallized at a temperature between Tg and Tm-2 (PEEK's normal melting point) from the glassy state also exhibited the multi-melting behaviour like poly(aryl ether ketones) homopolymers. In addition, the low-temperature melting peak was independent of composition of poly(aryl ether ketones) blends and only associated with the thermal history. (C) 1997 Elsevier Science Ltd.
Resumo:
An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.
Resumo:
A Series of poly(aryl ether ether ketone ketone) containing meta-phenyl link were synthesized, the general properties were studied by DSC, stretch, impact, etc.. The results indicated that with the raising of meta linkage monomer fractions, the glass transition point decreased, the melting temperature decreased at first, and then disappeared, but for all-meta-linked polymer, T-m appeared once more. And this kind of polymer had good stretch and impact resistance performance.
Resumo:
A series of poly(aryl ether ketone)s containing meta-phenyl links are synthesized, DSC and wide-angle X-ray scattering, etc, are used to study the general properties of the polymers, With the increasing of meta linkage monomer percentage, the melting temperature decreases sharply at first, then rises steadily, the glass transition point. keeps a stable value, and crystallin;ty and crystallizing rate are reduced, A part of amorphous film of the polymer is annealed at different temperatures, DSC scan shows that besides T-m, a new melting peak (T-m') at low temperature appears, And with heat treating temperature rising, T-m' shifts to high temperature, and T-m keeps a stable value.
Resumo:
The change in the microphase separation transition (MST) temperature of a styrene-butadiene-styrene (SBS) triblock copolymer induced by the addition of polystyrene (PS) was investigated by small-angle X-ray scattering. It was found that the transition temperature was determined from the molecular weight (M(H)) Of the added PS in relation to that of the corresponding blocks (M(A)) in the copolymer. The MST temperature decreased with added PS if M(H)/M(A) < 1/4, while it increased with added PS when M(H)/M(A) > 1/4 Analysis of the theoretical expression based on the random phase approximation showed exactly the same tendency of change in the transition temperatures as that observed experimentally. The interaction parameter, chi(SB), obtained by nonlinear fitting of the scattering profiles of SBS/PS blends in the disordered state, was found to be a function of temperature and composition. Composition fluctuations were found to exist in SBS/PS blends, increasing with increasing addition of PS but diminishing with increasing molecular weight of the added PS.
Resumo:
The morphology and dynamic mechanical properties of blends of poly(ether imide) (PEI) and nylon 66 over the full composition range have been investigated. Torque changes during mixing were also measured. Lower torque values than those calculated by the log-additivity rule were obtained, resulting from the slip at the interface due to low interaction between the components. The particle size of the dispersed phase and morphology of the blends were examined by scanning electron microscopy. The composition of each phase was calculated. The blends of PEI and nylon 66 showed phase-separated structures with small spherical domains of 0.3 similar to 0.7 mu m. The glass transition temperatures (T(g)s) of the blends were shifted inward, compared with those of the homopolymers, which implied that the blends were partially miscible over a range of compositions. T-g1, corresponding to PEI-rich phase, was less affected by composition than T-g2, corresponding to nylon 66-rich phase. This indicated that the fraction of PEI mixed into nylon 66-rich phase increased with decreasing PEI content and that nylon 66 was rarely mixed into the PEI-rich phase. The effect of composition on the secondary relaxations was examined. Both T-beta, corresponding to the motion of amide groups in nylon 66, and T-gamma, corresponding to that of ether groups in PEI, were shifted to higher temperature, probably because of the formation of intermolecular interactions between the components.
Resumo:
The effects of metal ions and lanthanide complexes on the gel-to-liquid crystal phase transition temperature T-m of dipalmitoylphosphatidylethanolamine liposomes have been studied by differential scanning calorimetry (DSC) method. The results show that the addition of metal ions to the dipalmitoylphosphatidylethanolamine (DPPE) liposomes dispersions increases the main phase transition temperature T-m in the order of monovalent< divalent< trivalent cations. The enhancement of T-m is not large as increasing the lanthanide ions concentration. The enhancement of Pr3+ is larger than that of La3+. Remarkable differences were observed between La-citrate and La-lactate complexes at different pH solutions. At pH 7.0, La-citrate complex has no effect on the T-m, La-lactate complex, however, increases the T-m value, and the increase is larger than that of free lanthanide ions at the same concentration. The decrease of pH of complexes solutions lowers the phase transition temperature. We have preliminarily discussed the mechanism of the enhancements of lanthanide ions and the synergism of lanthanide ion and lactate ligand follow the ion induced dehydration of lipid and the potential effects of ion-lipid interaction.
Resumo:
Mossbauer spectra of europium pentaphosphate are measured at various temperatures (126 to 200-degrees-C). Some Mossbauer parameters, such as isomer shift, electric quadrupole splitting, and asymmetry parameter of the EFG at Eu-151 nuclei are derived from the experimental spectra. The lattice parameters of the crystal are determined at several temperatures. The experimental results indicate that the crystal structure of europium pentaphosphate changes from monoclinic to orthorhombic. All of the temperature dependences of the Mossbauer parameters provide evidence of a phase transition of the crystal. The phase transition temperature can be determined from the curve of the asymmetry parameter of EFG versus temperature to 165-degrees-C.
Resumo:
A new isothermal equation of state for polymers in the solid and the liquid is given by P = B(T, 0)/(n - m){[V(T, 0)/V(T, P)]n + 1 - [V(T, 0)/V(T, P)]m + 1} where n = 6.14 and m = 1.16 are general constant's for polymer systems. Comparison of the equation with experimental data is made for six polymers at different temperatures and pressures. The results predict that the equation of state describes the isothermal compression behaviour of polymers in the glass and the melt states, except at the transition temperature.
Resumo:
Polyoxypropylene glycol (PPG) (or castor oil) and toluene diisocyanate (TDI) were mixed, and the prepolymer polyurethane (PU) (I) was formed. Vinyl-terminated polyurethane (II) was prepared from (I), and hydroxyethyl acrylate, AB crosslinked polymers (ABCPs) were synthesized from (II) and vinyl monomers such as styrene, methyl methacrylate, vinyl acetate, etc. The dynamic mechanical properties and morphology of ABCPs were measured. The ABCPs based on PPG have double glass transition temperatures (T(g)) on the sigma-vs. temperature curves. They display a two-phase morphology with plastic components forming the continous phase and PU-rich domains forming the separated phase on the electron micrographs. Irregular shapes and a highly polydisperse distribution of PU-rich domain sizes were observed. The crosslink density of ABCPs has a notable effect on the morphology and properties. The average diameter of the PU-rich domains depends on the molecular weight of prepolymer PPG. The highly crosslinked structures will produce large numbers of very small domains. ABCPs based on castor oil show a single T(g) relaxation on the dynamic mechanical spectra. The compatibility between the two components is much better in ABCPs based on castor oil than in those based on PPG, because there is a high crosslink density in the former. Comparison of the dynamic mechanical spectra of ABCP and interpenetrating networks (IPN) based on castor oil with similar crosslink density and composition imply that the two components in ABCP are compatible whereas microphase separation occurs in IPN. An improvement in the compatibility is achieved by the crosslinking between the two networks.
Resumo:
Molar heat capacities of n-butanol and the azeotropic mixture in the binary system [water (x=0.716) plus n-butanol (x=0.284)] were measured with an adiabatic calorimeter in a temperature range from 78 to 320 K. The functions of the heat capacity with respect to thermodynamic temperature were established for the azeotropic mixture. A glass transition was observed at (111.9 +/- 1.1) K. The phase transitions took place at (179.26 +/- 0.77) and (269.69 +/- 0.14) K corresponding to the solid-liquid phase transitions of. n-butanol and water, respectively. The phase-transition enthalpy and entropy of water were calculated. A thermodynamic function of excess molar heat capacity with respect to temperature was established, which took account of physical mixing, destructions of self-association and cross-association for n-butanol and water, respectively. The thermodynamic functions and the excess thermodynamic ones of the binary systems relative to 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity and the calculated excess heat capacity with respect to temperature.
Resumo:
The heat capacities (C-p) of five types of gasohol (50 wt % ethanol and 50 wt % unleaded gasoline 93(#) (E50), 60 wt % ethanol and 40 wt % unleaded gasoline 93(#) (E60), 70 wt % ethanol and 30 wt % unleaded gasoline 93(#) (E70), 80 wt % ethanol and 20 wt % unleaded gasoline 93(#) (E80), and 90 wt % ethanol and 10 wt % unleaded gasoline 93(#) (E90), where the "93" denotes the octane number) were measured by adiabatic calorimetry in the temperature range of 78-320 K. A glass transition was observed at 95.61, 96.14, 96.56, 96.84, and 97.08 K for samples from the E50, E60, E70, E80, and E90 systems, respectively. A liquid-solid phase transition and a solid-liquid phase transition were observed in the respective temperature ranges of 118-153 and 155-163 K for E50, 117-150 and 151-164 K for E60, 115-154 and 154-166 K for E70, 113-152 and 152-167 K for E80, and 112-151 and 1581-167 K for E90. The polynomial equations of Cp and the excess heat capacities (C-p(E)), with respect to the thermodynamic temperature, were established through least-squares fitting. Based on the thermodynamic relationship and the equations obtained, the thermodynamic functions and the excess thermodynamic functions of the five gasohol samples were derived.