988 resultados para GATA Transcription Factors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Calcineurin inhibitors such as cyclosporin A (CsA) are the mainstay of immunosuppressive treatment for organ transplant recipients. Squamous cell carcinoma (SCC) of the skin is a major complication of treatment with these drugs, with a 65 to 100-fold higher risk than in the normal population. By contrast, the incidence of basal cell carcinoma (BCC), the other major keratinocyte-derived tumour of the skin, of melanoma and of internal malignancies increases to a significantly lesser extent. Here we report that genetic and pharmacological suppression of calcineurin/nuclear factor of activated T cells (NFAT) function promotes tumour formation in mouse skin and in xenografts, in immune compromised mice, of H-ras(V12) (also known as Hras1)-expressing primary human keratinocytes or keratinocyte-derived SCC cells. Calcineurin/NFAT inhibition counteracts p53 (also known as TRP53)-dependent cancer cell senescence, thereby increasing tumorigenic potential. ATF3, a member of the 'enlarged' AP-1 family, is selectively induced by calcineurin/NFAT inhibition, both under experimental conditions and in clinically occurring tumours, and increased ATF3 expression accounts for suppression of p53-dependent senescence and enhanced tumorigenic potential. Thus, intact calcineurin/NFAT signalling is critically required for p53 and senescence-associated mechanisms that protect against skin squamous cancer development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract : Transcriptional regulation is the result of a combination of positive and negative effectors, such as transcription factors, cofactors and chromatin modifiers. During my thesis project I studied chromatin association, and transcriptional and cell cycle regulatory functions of dHCF, the Drosophila homologue of the human protein HCF-1 (host cell factor-1). The human and Drosophila HCF proteins are synthesized as large polypeptides that are cleaved into two subunits (HCFN and HCFC), which remain associated with one another by non covalent interactions. Studies in mammalian cells over the past 20 years have been devoted to understanding the cellular functions of HCF-1 and have revealed that it is a key regulator of transcription and cell cycle regulation. In human cells, HCF-1 interacts with the histone methyltransferase Set1/Ash2 and MLL/Ash2 complexes and the histone deacetylase Sin3 complex, which are involved in transcriptional activation and repression, respectively. HCF-1 is also recruited to promoters to regulate G1 -to-S phase progression during the cell cycle by the activator transcription factors E2F1 and E2F3, and by the repressor transcription factor E2F4. HCF-1 protein structure and these interactions between HCP-1 and E2F transcriptional regulator proteins are also conserved in Drosophila. In this doctoral thesis, I use proliferating Drosophila SL2 cells to study both the genomic-binding sites of dHCF, using a combination of chromatin immunoprecipitation and ultra high throughput sequencing (ChIP-seq) analysis, and dHCF regulated genes, employing RNAi and microarray expression analysis. I show that dHCF is bound to over 7500 chromosomal sites in proliferating SL2 cells, and is located at +-200 bp relative to the transcriptional start sites of about 30% of Drosophila genes. There is also a direct relationship between dHCF promoter association and promoter- associated transcriptional activity. Thus, dHCF binding levels at promoters correlated directly with transcriptional activity. In contrast, expression studies showed that dHCF appears to be involved in both transcriptional activation and repression. Analysis of dHCF-binding sites identified nine dHCF-associated motifs, four of them linked dHCF to (i) two insulator proteins, GAGA and BEAF, (ii) the E-box motif, and (iii) a degenerated TATA-box. The dHCF-associated motifs allowed the organization of the dHCF-bound genes into five biological processes: differentiation, cell cycle and gene expression, regulation of endocytosis, and cellular localization. I further show that different mechanisms regulate dHCF association with chromatin. Despite that after dHCF cleavage the dHCFN and dHCFC subunits remain associated, the two subunits showed different affinities for chromatin and differential binding to a set of tested promoters, suggesting that dHCF could target specific promoters through each of the two subunits. Moreover, in addition to the interaction between dHCF and E2F transcription factors, the dHCF binding pattern is correlated with dE2F2 genomic 4 distribution. I show that dE2F factors are necessary for recruitment of dHCF to the promoter of a set of dHCF regulated genes. Therefore dHCF, as in mammals, is involved in regulation of G1 to S phase progression in collaboration with the dE2Fs transcription factors. In addition, gene expression arrays reveal that dHCF could indirectly regulate cell cycle progression by promoting expression of genes involved in gene expression and protein synthesis, and inhibiting expression of genes involved in cell-cell adhesion. Therefore, dHCF is an evolutionary conserved protein, which binds to many specific sites of the Drosophila genome via interaction with DNA of chromatin-binding proteins to regulate the expression of genes involved in many different cellular functions. Résumé : La regulation de la transcription est le résultat des effets positifs et négatifs des facteurs de transcription, cofacteurs et protéines effectrices qui modifient la chromatine. Pendant mon projet de thèse, j'ai étudié l'association a la chromatine, ainsi que la régulation de la transcription et du cycle cellulaire par dHCF, l'homologue chez la drosophile de la protéine humaine HCF-1 (host cell factor-1). Chez 1'humain et la V drosophile, les deux protéines HCF sont synthétisées sous la forme d'un long polypeptide, qui est ensuite coupé en deux sous-unités au centre de la protéine. Les deux sous-unités restent associées ensemble grâce a des interactions non-covalentes. Des études réalisées pendant les 20 dernières années ont permit d'établir que HCF-l et un facteur clé dans la régulation de la transcription et du cycle cellulaire. Dans les cellules humaines, HCF-1 active et réprime la transcription en interagissant avec des complexes de protéines qui activent la transcription en méthylant les histones (HMT), comme par Set1/Ash2 et MLL/Ash2, et d'autres complexes qui répriment la transcription et sont responsables de la déacétylation des histones (HDAC) comme la protéine Sin3. HCF-l est aussi recruté aux promoteurs par les activateurs de la transcription E2F l et E2F3a, et par le répresseur de la transcription E2F4 pour réguler la transition entre les phases G1 et S du cycle cellulaire. La structure de HCF-1 et les interactions entre HCF-l et les régulateurs de la transcription sont conservées chez la drosophile. Pendant ma these j'ai utilisé les cellules de la drosophile, SL2 en culture, pour étudier les endroits de liaisons de HCF-l à la chromatine, grâce a immunoprecipitation de la chromatine et du séquençage de l'ADN massif ainsi que les gènes régulés par dHCF 3 grâce a la technique de RNAi et des microarrays. Mes résultats on montré que dHCF se lie à environ 7565 endroits, et estimé a 1200 paire de bases autour des sites d'initiation de la transcription de 30% des gènes de la drosophile. J 'ai observe une relation entre dHCF et le niveau de la transcription. En effet, le niveau de liaison dHCF au promoteur corrèle avec l'activité de la transcription. Cependant, mes études d'expression ont montré que dHCF est implique dans le processus d'activation et mais aussi de répression de la transcription. L'analyse des séquences d'ADN liées par dHCF a révèle neuf motifs, quatre de ces motifs ont permis d'associer dl-ICF a deux protéines isolatrices GAGA et BEAF, au motif pour les E-boxes et a une TATA-box dégénérée. Les neuf motifs associes à dHCF ont permis d'associer les gènes lies par dHCF au promoteur a cinq processus biologiques: différentiation, cycle cellulaire, expression de gènes, régulation de l'endocytosis et la localisation cellulaire, J 'ai aussi montré qu'il y a plusieurs mécanismes qui régulent l'association de dHCF a la chromatine, malgré qu'après clivage, les deux sous-unites dHCFN and dHCFC, restent associées, elles montrent différentes affinités pour la chromatine et lient différemment un group de promoteurs, les résultats suggèrent que dHCF peut se lier aux promoteurs en utilisant chacune de ses sous-unitées. En plus de l'association de dHCF avec les facteurs de transcription dE2F s, la distribution de dHCF sur le génome corrèle avec celle du facteur de transcription dE2F2. J'ai aussi montré que les dE2Fs sont nécessaires pour le recrutement de dHCF aux promoteurs d'un sous-groupe de gènes régules par dHCF. Mes résultats ont aussi montré que chez la drosophile comme chez les humains, dl-ICF est implique dans la régulation de la progression de la phase G1 a la phase S du cycle cellulaire en collaboration avec dE2Fs. D'ailleurs, les arrays d'expression ont suggéré que dHCF pourrait réguler le cycle cellulaire de façon indirecte en activant l'expression de gènes impliqués dans l'expression génique et la synthèse de protéines, et en inhibant l'expression de gènes impliqués dans l'adhésion cellulaire. En conclusion, dHCF est une protéine, conservée dans l'évolution, qui se lie spécifiquement a beaucoup d'endroits du génome de Drosophile, grâce à l'interaction avec d'autres protéines, pour réguler l'expression des gènes impliqués dans plusieurs fonctions cellulaires.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Pseudomonas aeruginosa, the CbrA/CbrB two-component system is instrumental in the maintenance of the carbon-nitrogen balance and for growth on carbon sources that are energetically less favorable than the preferred dicarboxylate substrates. The CbrA/CbrB system drives the expression of the small RNA CrcZ, which antagonizes the repressing effects of the catabolite repression control protein Crc, an RNA-binding protein. Dicarboxylates appear to cause carbon catabolite repression by inhibiting the activity of the CbrA/CbrB system, resulting in reduced crcZ expression. Here we have identified a conserved palindromic nucleotide sequence that is present in upstream activating sequences (UASs) of promoters under positive control by CbrB and σ(54) RNA polymerase, especially in the UAS of the crcZ promoter. Evidence for recognition of this palindromic sequence by CbrB was obtained in vivo from mutational analysis of the crcZ promoter and in vitro from electrophoretic mobility shift assays using crcZ promoter fragments and purified CbrB protein truncated at the N terminus. Integration host factor (IHF) was required for crcZ expression. CbrB also activated the lipA (lipase) promoter, albeit less effectively, apparently by interacting with a similar but less conserved palindromic sequence in the UAS of lipA. As expected, succinate caused CbrB-dependent catabolite repression of the lipA promoter. Based on these results and previously published data, a consensus CbrB recognition sequence is proposed. This sequence has similarity to the consensus NtrC recognition sequence, which is relevant for nitrogen control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nodular fasciitis (NF) is a rapidly growing cellular mass composed of fibroblasts/myofibroblasts, usually localized in subcutaneous tissues, that typically undergoes fibrosis and almost never recurs. Desmoid tumours (DTs) are rare forms of fibroblastic/myofibroblastic growth that arise in deep soft tissues, display a propensity for local infiltration and recurrence, but fail to metastasize. Given that both entities are primarily fibroblastic/myofibroblastic lesions with overlapping histological features, their gene expression profiles were compared to identify differentially expressed genes that may provide not only potential diagnostic markers, but also clues as to the pathogenesis of each disorder. Differentially expressed transcripts (89 clones displaying increased expression in DTs and 246 clones displaying increased expression in NF) included genes encoding several receptor and non-receptor tyrosine kinases (EPHB3, PTPRF, GNAZ, SYK, LYN, EPHA4, BIRC3), transcription factors (TWIST1, PITX2, EYA2, OAS1, MITF, TCF20), and members of the Wnt signalling pathway (AXIN2, WISP1, SFRP). Remarkably, almost one-quarter of the differentially expressed genes encode proteins associated with inflammation and tissue remodelling, including members of the interferon (IFN), tumour necrosis factor (TNF), and transforming growth factor beta (TGF-beta) signalling pathways as well as metalloproteinases (MMP1, 9, 13, 23), urokinase plasminogen activator (PLAU), and cathepsins. The observations provide the first comparative molecular characterization of desmoid tumours and nodular fasciitis and suggest that selected tyrosine kinases, transcription factors, and members of the Wnt, TGF-beta, IFN, and TNF signalling pathways may be implicated in influencing and distinguishing their fate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glycerol, a product of adipose tissue lipolysis, is an important substrate for hepatic glucose synthesis. However, little is known about the regulation of hepatic glycerol metabolism. Here we show that several genes involved in the hepatic metabolism of glycerol, i.e., cytosolic and mitochondrial glycerol 3-phosphate dehydrogenase (GPDH), glycerol kinase, and glycerol transporters aquaporin 3 and 9, are upregulated by fasting in wild-type mice but not in mice lacking PPARalpha. Furthermore, expression of these genes was induced by the PPARalpha agonist Wy14643 in wild-type but not PPARalpha-null mice. In adipocytes, which express high levels of PPARgamma, expression of cytosolic GPDH was enhanced by PPARgamma and beta/delta agonists, while expression was decreased in PPARgamma(+/-) and PPARbeta/delta(-/-) mice. Transactivation, gel shift, and chromatin immunoprecipitation experiments demonstrated that cytosolic GPDH is a direct PPAR target gene. In line with a stimulating role of PPARalpha in hepatic glycerol utilization, administration of synthetic PPARalpha agonists in mice and humans decreased plasma glycerol. Finally, hepatic glucose production was decreased in PPARalpha-null mice simultaneously fasted and exposed to Wy14643, suggesting that the stimulatory effect of PPARalpha on gluconeogenic gene expression was translated at the functional level. Overall, these data indicate that PPARalpha directly governs glycerol metabolism in liver, whereas PPARgamma regulates glycerol metabolism in adipose tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Arabidopsis, interplay between nuclear auxin perception and trans-cellular polar auxin transport determines the transcriptional auxin response. In brevis radix (brx) mutants, this response is impaired, probably indirectly because of disturbed crosstalk between the auxin and brassinosteroid pathways. Here we provide evidence that BRX protein is plasma membrane-associated, but translocates to the nucleus upon auxin treatment to modulate cellular growth, possibly in conjunction with NGATHA class B3 domain-type transcription factors. Application of the polar auxin transport inhibitor naphthalene phthalamic acid (NPA) resulted in increased BRX abundance at the plasma membrane. Thus, nuclear translocation of BRX could depend on cellular auxin concentration or on auxin flux. Supporting this idea, NPA treatment of wild-type roots phenocopied the brx root meristem phenotype. Moreover, BRX is constitutively turned over by the proteasome pathway in the nucleus. However, a stabilized C-terminal BRX fragment significantly rescued the brx root growth phenotype and triggered a hypocotyl gain-of-function phenotype, similar to strong overexpressors of full length BRX. Therefore, although BRX activity is required in the nucleus, excess activity interferes with normal development. Finally, similar to the PIN-FORMED 1 (PIN1) auxin efflux carrier, BRX is polarly localized in vascular cells and subject to endocytic recycling. Expression of BRX under control of the PIN1 promoter fully rescued the brx short root phenotype, suggesting that the two genes act in the same tissues. Collectively, our results suggest that BRX might provide a contextual readout to synchronize cellular growth with the auxin concentration gradient across the root tip.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Because the transcription factor neuronal Per-Arnt-Sim-type signal-sensor protein-domain protein 2 (NPAS2) acts both as a sensor and an effector of intracellular energy balance, and because sleep is thought to correct an energy imbalance incurred during waking, we examined NPAS2's role in sleep homeostasis using npas2 knockout (npas2-/-) mice. We found that, under conditions of increased sleep need, i.e., at the end of the active period or after sleep deprivation (SD), NPAS2 allows for sleep to occur at times when mice are normally awake. Lack of npas2 affected electroencephalogram activity of thalamocortical origin; during non-rapid eye movement sleep (NREMS), activity in the spindle range (10-15 Hz) was reduced, and within the delta range (1-4 Hz), activity shifted toward faster frequencies. In addition, the increase in the cortical expression of the NPAS2 target gene period2 (per2) after SD was attenuated in npas2-/- mice. This implies that NPAS2 importantly contributes to the previously documented wake-dependent increase in cortical per2 expression. The data also revealed numerous sex differences in sleep; in females, sleep need accumulated at a slower rate, and REMS loss was not recovered after SD. In contrast, the rebound in NREMS time after SD was compromised only in npas2-/- males. We conclude that NPAS2 plays a role in sleep homeostasis, most likely at the level of the thalamus and cortex, where NPAS2 is abundantly expressed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The in vitro adenovirus (Ad) DNA replication system provides an assay to study the interaction of viral and host replication proteins with the DNA template in the formation of the preinitiation complex. This initiation system requires in addition to the origin DNA sequences 1) Ad DNA polymerase (Pol), 2) Ad preterminal protein (pTP), the covalent acceptor for protein-primed DNA replication, and 3) nuclear factor I (NFI), a host cell protein identical to the CCAAT box-binding transcription factor. The interactions of these proteins were studied by coimmunoprecipitation and Ad origin DNA binding assays. The Ad Pol can bind to origin sequences only in the presence of another protein which can be either pTP or NFI. While NFI alone can bind to its origin recognition sequence, pTP does not specifically recognize DNA unless Ad Pol is present. Thus, protein-protein interactions are necessary for the targetting of either Ad Pol or pTP to the preinitiation complex. DNA footprinting demonstrated that the Ad DNA site recognized by the pTP.Pol complex was within the first 18 bases at the end of the template which constitutes the minimal origin of replication. Mutagenesis studies have defined the Ad Pol interaction site on NFI between amino acids 68-150, which overlaps the DNA binding and replication activation domain of this factor. A putative zinc finger on the Ad Pol has been mutated to a product that fails to bind the Ad origin sequences but still interacts with pTP. These results indicate that both protein-protein and protein-DNA interactions mediate specific recognition of the replication origin by Ad DNA polymerase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transcriptional activity relies on coregulators that modify the chromatin structure and serve as bridging factors between transcription factors and the basal transcription machinery. Using the DE domain of human peroxisome proliferator-activated receptor gamma (PPARgamma) as bait in a yeast two-hybrid screen of a human adipose tissue library, we isolated the scaffold attachment factor B1 (SAFB1/HET/HAP), which was previously shown to be a corepressor of estrogen receptor alpha. We show here that SAFB1 has a very broad tissue expression profile in human and is also expressed all along mouse embryogenesis. SAFB1 interacts in pull-down assays not only with PPARgamma but also with all nuclear receptors tested so far, albeit with different affinities. The association of SAFB1 and PPARgamma in vivo is further demonstrated by fluorescence resonance energy transfer (FRET) experiments in living cells. We finally show that SAFB1 is a rather general corepressor for nuclear receptors. Its change in expression during the early phases of adipocyte and enterocyte differentiation suggests that SAFB1 potentially influences cell proliferation and differentiation decisions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a hallmark of tuberculosis (TB), Mycobacterium tuberculosis (MTB) induces granulomatous lung lesions and systemic inflammatory responses during active disease. Molecular regulation of inflammation is associated with inflammasome assembly. We determined the extent to which MTB triggers inflammasome activation and how this impacts on the severity of TB in a mouse model. MTB stimulated release of mature IL-1β in macrophages while attenuated M. bovis BCG failed to do so. Tubercle bacilli specifically activated the NLRP3 inflammasome and this propensity was strictly controlled by the virulence-associated RD1 locus of MTB. However, Nlrp3-deficient mice controlled pulmonary TB, a feature correlated with NLRP3-independent production of IL-1β in infected lungs. Our studies demonstrate that MTB activates the NLRP3 inflammasome in macrophages in an ESX-1-dependent manner. However, during TB, MTB promotes NLRP3- and caspase-1-independent IL-1β release in myeloid cells recruited to lung parenchyma and thus overcomes NLRP3 deficiency in vivo in experimental models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated if changes in hepatic lipid metabolism produced by old age are related to changes in liver peroxisome proliferator-activated receptor alpha (PPARalpha). Our results indicate that 18-month-old rats showed a marked decrease in the expression and activity of liver PPARalpha, as shown by significant reductions in PPARalpha mRNA, protein and binding activity, resulting in a reduction in the relative mRNA levels of PPARalpha target genes, such as liver-carnitine-palmitoyl transferase-I (CPT-I) and mitochondrial medium-chain acyl-CoA dehydrogenase (MCAD). Further, in accordance with a liver PPARalpha deficiency in old rats, treatment of old animals with a therapeutic dose of gemfibrozil (GFB) (3mg/kg per day, 21 days) was ineffective in reducing plasma triglyceride concentrations (TG), despite attaining a 50% reduction in TG when GFB was administered to young animals at the same dose and length of treatment. We hypothesize that the decrease in hepatic PPARalpha can be related to a state of leptin resistance present in old animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nuclear receptor PPAR alpha is a key regulatory transcription factor in lipid homeostasis, some liver detoxification processes and the control of inflammation. Recent findings suggest that many hypolipidemic drugs and anti-inflammatory agents can potentially act by binding to PPAR alpha and inducing its activity. Here, we identify some structure-function relationships in PPAR alpha, by using the species-specific responsiveness to the two hypolipidemic agents, Wy 14,643 and 5,8,11,14-eicosatetraynoic acid (ETYA). We first show that the species-specific differences are mediated primarily via the ligand binding domain of the receptor and that these two drugs are indeed ligands of PPAR alpha. By mutagenesis analyses we identify amino acid residues in the ligand binding domains of Xenopus, mouse and human PPAR alpha, that confer preferential responsiveness to ETYA and Wy 14,643. These findings will aid in the development of new synthetic PPAR alpha ligands as effective therapeutics for lipid-related diseases and inflammatory disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peroxisome proliferator activated receptors are ligand activated transcription factors belonging to the nuclear hormone receptor superfamily. Three cDNAs encoding such receptors have been isolated from Xenopus laevis (xPPAR alpha, beta, and gamma). Furthermore, the gene coding for xPPAR beta has been cloned, thus being the first member of this subfamily whose genomic organization has been solved. Functionally, xPPAR alpha as well as its mouse and rat homologs are thought to play an important role in lipid metabolism due to their ability to activate transcription of a reporter gene through the promoter of the acyl-CoA oxidase (ACO) gene. ACO catalyzes the rate limiting step in the peroxisomal beta-oxidation of fatty acids. Activation is achieved by the binding of xPPAR alpha on a regulatory element (DR1) found in the promoter region of this gene, xPPAR beta and gamma are also able to recognize the same type of element and are, as PPAR alpha, able to form heterodimers with retinoid X receptor. All three xPPARs appear to be activated by synthetic peroxisome proliferators as well as by naturally occurring fatty acids, suggesting that a common mode of action exists for all the members of this subfamily of nuclear hormone receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose, and xenobiotic metabolism. Impairment of this rhythm has been shown to lead to diverse pathologies, including metabolic syndrome. Currently, it is supposed that the circadian clock regulates metabolism mostly by regulating expression of liver enzymes at the transcriptional level. Here, we show that the circadian clock also controls hepatic metabolism by synchronizing a secondary 12 hr period rhythm characterized by rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock and provokes deregulation of endoplasmic reticulum-localized enzymes. This leads to impaired lipid metabolism, resulting in aberrant activation of the sterol-regulated SREBP transcription factors. The resulting aberrant circadian lipid metabolism in mice devoid of the circadian clock could be involved in the appearance of the associated metabolic syndrome.