994 resultados para Functional Fitness
Resumo:
Evolutionary graph theory has been proposed as providing new fundamental rules for the evolution of co-operation and altruism. But how do these results relate to those of inclusive fitness theory? Here, we carry out a retrospective analysis of the models for the evolution of helping on graphs of Ohtsuki et al. [Nature (2006) 441, 502] and Ohtsuki & Nowak [Proc. R. Soc. Lond. Ser. B Biol. Sci (2006) 273, 2249]. We show that it is possible to translate evolutionary graph theory models into classical kin selection models without disturbing at all the mathematics describing the net effect of selection on helping. Model analysis further demonstrates that costly helping evolves on graphs through limited dispersal and overlapping generations. These two factors are well known to promote relatedness between interacting individuals in spatially structured populations. By allowing more than one individual to live at each node of the graph and by allowing interactions to vary with the distance between nodes, our inclusive fitness model allows us to consider a wider range of biological scenarios leading to the evolution of both helping and harming behaviours on graphs.
Resumo:
The aim of the present study was to investigate the relative importance of flooding- and confinement-related environmentalfeatures in explaining macroinvertebrate trait structure and diversity in a pool of wetlands located in a Mediterranean riverfloodplain. To test hypothesized trait-environment relationships, we employed a recently implemented statistical procedure, thefourth-corner method. We found that flooding-related variables, mainly pH and turbidity, were related to traits that confer an abilityof the organism to resist flooding (e.g., small body-shape, protection of eggs) or recuperate faster after flooding (e.g., short life-span, asexual reproduction). In contrast, confinement-related variables, mainly temperature and organic matter, enhanced traits that allow organisms to interact and compete with other organisms (e.g., large size, sexual reproduction) and to efficiently use habitat and resources (e.g., diverse locomotion and feeding strategies). These results are in agreement with predictions made under the River Habitat Templet for lotic ecosystems, and demonstrate the ability of the fourth-corner method to test hypothesis that posit traitenvironment relationships. Trait diversity was slightly higher in flooded than in confined sites, whereas trait richness was not significantly different. This suggests that although trait structure may change in response to the main environmental factors, as evidenced by the fourth-corner method, the number of life-history strategies needed to persist in the face of such constraints remains more or less constant; only their relative dominance differs
Resumo:
The paper argues that a functional reduction of ordinary psychology to neuropsychology is possible by means of constructing fine-grained functional, mental sub-types that are coextensive with neuropsychological types. We establish this claim by means of considering as examples the cases of the disconnection syndrome and schizophrenia. We point out that the result is a conservative reduction, vindicating the scientific quality of the mental types of ordinary psychology by systematically linking them with neuroscience. That procedure of conservative reduction by means of functional sub-types is in principle repeatable down to molecular neuroscience.
Resumo:
CONTEXT: Recent magnetic resonance imaging studies have attempted to relate volumetric brain measurements in early schizophrenia to clinical and functional outcome some years later. These studies have generally been negative, perhaps because gray and white matter volumes inaccurately assess the underlying dysfunction that might be predictive of outcome. OBJECTIVE: To investigate the predictive value of frontal and temporal spectroscopy measures for outcome in patients with first-episode psychoses. DESIGN: Left prefrontal cortex and left mediotemporal lobe voxels were assessed using proton magnetic resonance spectroscopy to provide the ratio of N-acetylaspartate (NAA) and choline-containing compounds to creatine and phosphocreatine (Cr) (NAA/Cr ratio). These data were used to predict outcome at 18 months after admission, as assessed by a systematic medical record audit. SETTING: Early psychosis clinic. PARTICIPANTS: Forty-six patients with first-episode psychosis. MAIN OUTCOME MEASURES: We used regression models that included age at imaging and duration of untreated psychosis to predict outcome scores on the Global Assessment of Functioning Scale, Clinical Global Impression scales, and Social and Occupational Functional Assessment Scale, as well as the number of admissions during the treatment period. We then further considered the contributions of premorbid function and baseline level of negative symptoms. RESULTS: The only spectroscopic predictor of outcome was the NAA/Cr ratio in the prefrontal cortex. Low scores on this variable were related to poorer outcome on all measures. In addition, the frontal NAA/Cr ratio explained 17% to 30% of the variance in outcome. CONCLUSIONS: Prefrontal neuronal dysfunction is an inconsistent feature of early psychosis; rather, it is an early marker of poor prognosis across the first years of illness. The extent to which this can be used to guide treatment and whether it predicts outcome some years after first presentation are questions for further research.
Resumo:
To date very few studies have addressed the effects of inbreeding in social Hymenoptera, perhaps because the costs of inbreeding are generally considered marginal owing to male haploidy whereby recessive deleterious alleles are strongly exposed to selection in males. Here, we present one of the first studies on the effects of queen and worker homozygosity on colony performance. In a wild population of the ant Formica exsecta, the relative investment of single-queen colonies in sexual production decreased with increased worker homozygosity. This may either stem from increased homozygosity decreasing the likelihood of diploid brood to develop into queens or a lower efficiency of more homozygous workers at feeding larvae and thus a lower proportion of the female brood developing into queens. There was also a significant negative association between colony age and the level of queen but not worker homozygosity. This association may stem from inbreeding affecting queen lifespan and/or their fecundity, and thus colony survival. However, there was no association between queen homozygosity and colony size, suggesting that inbreeding affects colony survival as a result of inbred queens having a shorter lifespan rather than a lower fecundity. Finally, there was no significant association between either worker or queen homozygosity and the probability of successful colony founding, colony size and colony productivity, the three other traits studied. Overall, these results indicate that inbreeding depression may have important effects on colony fitness by affecting both the parental (queen) and offspring (worker)generations cohabiting within an ant colony.
Identification of optimal structural connectivity using functional connectivity and neural modeling.
Resumo:
The complex network dynamics that arise from the interaction of the brain's structural and functional architectures give rise to mental function. Theoretical models demonstrate that the structure-function relation is maximal when the global network dynamics operate at a critical point of state transition. In the present work, we used a dynamic mean-field neural model to fit empirical structural connectivity (SC) and functional connectivity (FC) data acquired in humans and macaques and developed a new iterative-fitting algorithm to optimize the SC matrix based on the FC matrix. A dramatic improvement of the fitting of the matrices was obtained with the addition of a small number of anatomical links, particularly cross-hemispheric connections, and reweighting of existing connections. We suggest that the notion of a critical working point, where the structure-function interplay is maximal, may provide a new way to link behavior and cognition, and a new perspective to understand recovery of function in clinical conditions.
Resumo:
Overall introduction.- Longitudinal studies have been designed to investigate prospectively, from their beginning, the pathway leading from health to frailty and to disability. Knowledge about determinants of healthy ageing and health behaviour (resources) as well as risks of functional decline is required to propose appropriate preventative interventions. The functional status in older people is important considering clinical outcome in general, healthcare need and mortality. Part I.- Results and interventions from lucas (longitudinal urban cohort ageing study). Authors.- J. Anders, U. Dapp, L. Neumann, F. Pröfener, C. Minder, S. Golgert, A. Daubmann, K. Wegscheider,. W. von Renteln-Kruse Methods.- The LUCAS core project is a longitudinal cohort of urban community-dwelling people 60 years and older, recruited in 2000/2001. Further LUCAS projects are cross-sectional comparative and interventional studies (RCT). Results.- The emphasis will be on geriatric medical care in a population-based approach, discussing different forms of access, too. (Dapp et al. BMC Geriatrics 2012, 12:35; http://www.biomedcentral.com/1471-2318/12/35): - longitudinal data from the LUCAS urban cohort (n = 3.326) will be presented covering 10 years of observation, including the prediction of functional decline, need of nursing care, and mortality by using a self-filling screening tool; - interventions to prevent functional decline do focus on first (pre-clinical) signs of pre-frailty before entering the frailty-cascade ("Active Health Promotion in Old Age", "geriatric mobility centre") or disability ("home visits"). Conclusions.- The LUCAS research consortium was established to study particular aspects of functional competence, its changes with ageing, to detect pre-clinical signs of functional decline, and to address questions on how to maintain functional competence and to prevent adverse outcome in different settings. The multidimensional data base allows the exploration of several further questions. Gait performance was exmined by GAITRite®-System. Supported by the Federal Ministry for Education and Research (BMBF Funding No. 01ET1002A). Part II.- Selected results from the lausanne cohort 65+ (Lc65 + ) Study (Switzerland). Authors.- Prof Santos-Eggimann Brigitte, Dr Seematter-Bagnoud Laurence, Prof Büla Christophe, Dr Rochat Stéphane. Methods.- The Lc65+ cohort was launched in 2004 with the random selection of 3054 eligible individuals aged 65 to 70 (birth year 1934-1938) in the non-institutionalized population of Lausanne (Switzerland). Results.- Information is collected about life course social and health-related events, socio-economics, medical and psychosocial dimensions, lifestyle habits, limitations in activities of daily living, mobility impairments, and falls. Gait performance are objectively measured using body-fixed sensors. Frailty is assessed using Fried's frailty phenotype. Follow-up consists in annual self-completed questionnaires, as well as physical examination and physical and mental performance tests every three years. - Lausanne cohort 65+ (Lc65 + ): design and longitudinal outcomes. The baseline data collection was completed among 1422 participants in 2004-2005 through self-completed questionnaires, face-to-face interviews, physical examination and tests of mental and physical performances. Information about institutionalization, self-reported health services utilization, and death is also assessed. An additional random sample (n = 1525) of 65-70 years old subjects was recruited in 2009 (birth year 1939-1943). - lecture no 4: alcohol intake and gait parameters: prevalent and longitudinal association in the Lc65+ study. The association between alcohol intake and gait performance was investigated.
Resumo:
This study aimed to characterise both the [Formula: see text] kinetics within constant heavy-intensity swimming exercise, and to assess the relationships between [Formula: see text] kinetics and other parameters of aerobic fitness, in well-trained swimmers. On separate days, 21 male swimmers completed: (1) an incremental swimming test to determine their maximal oxygen uptake [Formula: see text], first ventilatory threshold (VT), and the velocity associated with [Formula: see text] [Formula: see text] and (2) two square-wave transitions from rest to heavy-intensity exercise, to determine their [Formula: see text] kinetics. All the tests involved breath-by-breath analysis of freestyle swimming using a swimming snorkel. [Formula: see text] kinetics was modelled with two exponential functions. The mean values for the incremental test were 56.0 ± 6.0 ml min(-1) kg(-1), 1.45 ± 0.08 m s(-1); and 42.1 ± 5.7 ml min(-1) kg(-1) for [Formula: see text], [Formula: see text] and VT, respectively. For the square-wave transition, the time constant of the primary phase (τ(p)) averaged 17.3 ± 5.4 s and the relevant slow component (A'(sc)) averaged 4.8 ± 2.9 ml min(-1) kg(-1) [representing 8.9% of the end-exercise [Formula: see text] (%A'(sc))]. τ(p) was correlated with [Formula: see text] (r = -0.55, P = 0.01), but not with either [Formula: see text] (r = 0.05, ns) or VT (r = 0.14, ns). The %A'(sc) did not correlate with either [Formula: see text] (r = -0.14, ns) or [Formula: see text] (r = 0.06, ns), but was inversely related with VT (r = -0.61, P < 0.01). This study was the first to describe the [Formula: see text] kinetics in heavy-intensity swimming using specific swimming exercise and appropriate methods. As has been demonstrated in cycling, faster [Formula: see text] kinetics allow higher aerobic power outputs to be attained. The slow component seems to be reduced in swimmers with higher ventilatory thresholds.
Resumo:
In Pseudomonas aeruginosa, cell-cell communication based on N-acyl-homoserine lactone (AHL) signal molecules (termed quorum sensing) is known to control the production of extracellular virulence factors. Hence, in pathogenic interactions with host organisms, the quorum-sensing (QS) machinery can confer a selective advantage on P. aeruginosa. However, as shown by transcriptomic and proteomic studies, many intracellular metabolic functions are also regulated by quorum sensing. Some of these serve to regenerate the AHL precursors methionine and S-adenosyl-methionine and to degrade adenosine via inosine and hypoxanthine. The fact that a significant percentage of clinical and environmental isolates of P. aeruginosa is defective for QS because of mutation in the major QS regulatory gene lasR, raises the question of whether the QS machinery can have a negative impact on the organism's fitness. In vitro, lasR mutants have a higher probability to escape lytic death in stationary phase under alkaline conditions than has the QS-proficient wild type. Similar selective forces might also operate in natural environments.
Resumo:
The neurobiological basis of psychogenic movement disorders remains poorly understood and the management of these conditions difficult. Functional neuroimaging studies have provided some insight into the pathophysiology of disorders implicating particularly the prefrontal cortex, but there are no studies on psychogenic dystonia, and comparisons with findings in organic counterparts are rare. To understand the pathophysiology of these disorders better, we compared the similarities and differences in functional neuroimaging of patients with psychogenic dystonia and genetically determined dystonia, and tested hypotheses on the role of the prefrontal cortex in functional neurological disorders. Patients with psychogenic (n = 6) or organic (n = 5, DYT1 gene mutation positive) dystonia of the right leg, and matched healthy control subjects (n = 6) underwent positron emission tomography of regional cerebral blood flow. Participants were studied during rest, during fixed posturing of the right leg and during paced ankle movements. Continuous surface electromyography and footplate manometry monitored task performance. Averaging regional cerebral blood flow across all tasks, the organic dystonia group showed abnormal increases in the primary motor cortex and thalamus compared with controls, with decreases in the cerebellum. In contrast, the psychogenic dystonia group showed the opposite pattern, with abnormally increased blood flow in the cerebellum and basal ganglia, with decreases in the primary motor cortex. Comparing organic dystonia with psychogenic dystonia revealed significantly greater regional blood flow in the primary motor cortex, whereas psychogenic dystonia was associated with significantly greater blood flow in the cerebellum and basal ganglia (all P < 0.05, family-wise whole-brain corrected). Group × task interactions were also examined. During movement, compared with rest, there was abnormal activation in the right dorsolateral prefrontal cortex that was common to both organic and psychogenic dystonia groups (compared with control subjects, P < 0.05, family-wise small-volume correction). These data show a cortical-subcortical differentiation between organic and psychogenic dystonia in terms of regional blood flow, both at rest and during active motor tasks. The pathological prefrontal cortical activation was confirmed in, but was not specific to, psychogenic dystonia. This suggests that psychogenic and organic dystonia have different cortical and subcortical pathophysiology, while a derangement in mechanisms of motor attention may be a feature of both conditions.
Resumo:
ATP-gated P2X receptors and acid-sensing ion channels are two distinct ligand-gated ion channels that assemble into trimers. They are involved in many important physiological functions such as pain sensation and are recognized as important therapeutic targets. They have unrelated primary structures and respond to different ligands (ATP and protons) and are thus considered as two different ion channels. As a consequence, comparisons of the biophysical properties and underlying mechanisms have only been rarely made between these two channels. However, the recent determination of their molecular structures by X-ray crystallography has revealed unexpected parallels in the architecture of the two pores, providing a basis for possible functional analogies. In this review, we analyze the structural and functional similarities that are shared by these trimeric ion channels, and we outline key unanswered questions that, if addressed experimentally, may help us to elucidate how two unrelated ion channels have adopted a similar fold of the pore.
Resumo:
P>1. Root herbivores and pathogens interfere with basic below-ground plant function, and can thereby affect plant fitness and spatial and temporal patterns in natural plant communities. However, there has been little development of concepts and theories on below-ground plant defence, a deficit that is in contrast to the abundance of theorizing for above-ground plant parts.2. A review of the past 10 years of research on below-ground plant-herbivore interactions has revealed that, similar to above-ground tissues, root defences can be expressed constitutively or induced upon herbivore attack, and can be classified into direct and indirect traits, tolerance, and escape. Indeed, it has been shown that roots tolerate herbivory by outgrowing or re-growing lost tissues, or resist it by producing secondary metabolites that are toxic to herbivores or attract natural enemies of herbivores.3. We propose that, similar to above-ground plant-herbivore theories, the partition of abiotic and biotic factors over ecological succession can serve as the basis for predicting investment in defence strategies below-ground.4. Investigation of herbivore pressure and root responses along primary and secondary successional gradients suggests that: (i) roots are often fast growing, thinner and softer in early compared to later succession. (ii) Insect and nematode herbivore pressure increases until mid-succession and later decreases. (iii) Mycorrhizal abundance increases with succession, and the composition of fungal species changes through succession, often shifting from arbuscular mycorrhizae to ecto-mycorrhizae.5. Based on these findings, and on classical (above-ground) plant defence theory, we suggest the following set of testable hypotheses for below-ground plant defence: (i) During succession, early plants invest most of their resources in growth and less in defences (associated with a general lack of herbivores and pathogens, and with limited availability of resources in the system), therefore relying more on re-growth (tolerance) strategies. (ii) During mid-succession, a buildup of herbivore pressure facilitates replacement by plant species that exhibit greater direct and indirect defence strategies. (iii) Constitutive and inducible levels of defences may trade-off, and early successional plants should rely more on induction of defences after herbivore attack, whereas late successional plants will increasingly rely on constitutively produced levels of physical and chemical defence. (iv) Successional changes in microbial associations have consequences for root defence by improving plant nutrition and defence expression as well as directly competing for root space; however, toxic or impenetrable root defences may also limit association with root symbionts, and so may constrain the expression of root defence.