850 resultados para Formulations of ceramic body
Resumo:
Body change illusions have been of great interest in recent years for the understanding of how the brain represents the body. Appropriate multisensory stimulation can induce an illusion of ownership over a rubber or virtual arm, simple types of out-of-the-body experiences, and even ownership with respect to an alternate whole body. Here we use immersive virtual reality to investigate whether the illusion of a dramatic increase in belly size can be induced in males through (a) first person perspective position (b) synchronous visual-motor correlation between real and virtual arm movements, and (c) self-induced synchronous visual-tactile stimulation in the stomach area.
Resumo:
The integration of the human brain with computers is an interesting new area of applied neuroscience, where one application is replacement of a person"s real body by a virtual representation. Here we demonstrate that a virtual limb can be made to feel part of your body if appropriate multisensory correlations are provided. We report an illusion that is invoked through tactile stimulation on a person"s hidden real right hand with synchronous virtual visual stimulation on an aligned 3D stereo virtual arm projecting horizontally out of their shoulder. An experiment with 21 male participants showed displacement of ownership towards the virtual hand, as illustrated by questionnaire responses and proprioceptive drift. A control experiment with asynchronous tapping was carried out with a different set of 20 male participants who did not experience the illusion. After 5 min of stimulation the virtual arm rotated. Evidence suggests that the extent of the illusion was also correlated with the degree of muscle activity onset in the right arm as measured by EMG during this period that the arm was rotating, for the synchronous but not the asynchronous condition. A completely virtual object can therefore be experienced as part of one"s self, which opens up the possibility that an entire virtual body could be felt as one"s own in future virtual reality applications or online games, and be an invaluable tool for the understanding of the brain mechanisms underlying body ownership.
Resumo:
Hypothermia is a condition in which core temperature drops below the level necessary to maintain bodily functions. The decrease in temperature may disrupt some physiological systems of the body, including alterations in microcirculation and reduction of oxygen supply to tissues. The lack of oxygen can induce the generation of reactive oxygen and nitrogen free radicals (RONS), followed by oxidative stress, and finally, apoptosis and/or necrosis. Furthermore, since the hypothermia is inevitably followed by a rewarming process, we should also consider its effects. Despite hypothermia and rewarming inducing injury, many benefits of hypothermia have been demonstrated when used to preserve brain, cardiac, hepatic, and intestinal function against ischemic injury. This review gives an overview of the effects of hypothermia and rewarming on the oxidant/antioxidant balance and provides hypothesis for the role of reactive oxygen species in therapeutic hypothermia.
Resumo:
The goal of this study was to assess the localization and types of thrombosed plaques in cases of sudden cardiac death attributed to coronary artery disease and to evaluate possible correlations with body mass index (BMI) and increased heart weight. This retrospective study was performed on forensic cases for which the cause of death was attributed to coronary artery disease. A complete autopsy and a multi-phase postmortem computed tomography (CT) angiography (MPMCTA) were performed in all cases. Eighty-five cases were selected (mean age, 55.18 ± 11.04 years; 72 men and 13 women). MPMCTA performed prior to autopsy enabled an evaluation of coronary artery perfusion before dissection of the body and helped therefore to guide sampling for histology. An acute coronary thrombosis was found in 57 cases, which included plaque erosion in 26 cases (mean age, 46.73 ± 8.33 years) and rupture or intra-plaque hemorrhage in 31 cases (mean age, 58.23 ± 10.62 years). Erosions were most frequently found in the left anterior descending artery (61.5 %), while only 35.48 % of ruptures were observed in this artery. Chronic coronary pathology was considered as the main cause of death in 28 cases (mean age, 59.64 ± 9.47 years). Sixty-two of the cases (72.94 %) had a BMI in the overweight category (BMI ≥25), with the highest mean BMI in patients with chronic coronary pathology without acute thrombosis found at autopsy. The heart weight was above the predicted reference values in 52 cases (61.18 %). Our results are in accordance with previously published studies on the spatial distribution of vulnerable plaques. We observed a higher percentage of eroded plaques than previously reported. Patients with coronary erosions were significantly younger than those with plaque rupture or those without an acute coronary thrombosis (p values <0.0001). BMI and heart weight were significantly higher for cases without thrombosis in comparison with those with plaque rupture (p values 0.028 and 0.003, respectively). Our results indicating that increased BMI and overweight hearts are associated with chronic ischemic heart disease are compatible with clinical studies. Performing more postmortem studies on forensic autopsies, including modern radiological examinations with MPMCTA, can enhance the detection of vulnerable plaques in living patients and prevent sudden cardiac death.
Resumo:
Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13(°) , respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1(°) for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.
Resumo:
La grande majorité des organismes vivants ont développé un système d'horloges biologiques internes, appelées aussi horloges circadiennes, contrôlant l'expression de gênes impliqués dans de nombreux processus moléculaires et comportementaux. Au cours de la dernière décennie, des analyses « microarray » et séquençages à haut débit sur divers tissus de mammifères, indiquent que jusqu'à 20% du transcriptome serait sous contrôle circadien. Il était jusqu'à présent admis que la majorité des ARNm ayant une accumulation rythmique était générée par une transcription qui était elle-même rythmique. Toutefois, de récentes études ont suggéré qu'une proportion considérable des ARNm cycliques serait en fait générée par des mécanismes post-transcriptionnelles, incluant une régulation par micro-ARN (miARN). Lorsque j'ai débuté mon travail de thèse, l'influence des miARN sur l'expression des gènes circadiens, au niveau pangénomique, était encore méconnue. Par l'utilisation d'un modèle murin, dont la biogenèse des miARN a été spécifiquement désactivée au niveau des cellules hépatiques (knockout conditionnel pour Dicer), je me suis donc intéressée au rôle que jouaient ces molécules régulatrices sur la rythmicité de l'expression génique dans le foie. Des séquençages sur l'ensemble du transcriptome révèlent que l'horloge interne du foie est étonnement résistante à la perte totale des miARN. Nous avons cependant trouvé que les miARN agissent de façon importante sur la régulation de l'expression des gènes contrôlés par l'horloge moléculaire. La corégulation par les miARN, affectant jusqu'à 30% des gènes transcrits de façon rythmiques, conduit ainsi à une modulation de phase et d'amplitude du rythme de l'abondance des ARNm. En revanche, seuls peu de transcrits dépendent uniquement des miARN pour la rythmicité de leur accumulation. Enfin, mon travail met en évidence plusieurs miARN spécifiques, qui semblent préférentiellement moduler l'expression des gènes cycliques et permet l'identification de voies hépatiques particulièrement sujettes à une double régulation par les miARN et l'horloge biologique interne. La première masse d'analyses a essentiellement porté sur le rôle que jouent les miARN au niveau de l'expression des gènes contrôlés par l'horloge interne. Dans deux études de suivi, je me suis penchée sur deux aspects supplémentaires et complémentaires de la manière dont les miARN et l'oscillation de l'expression des gènes interagissent. Dans les hépatocytes murins, spécifiquement privés de Dicer, je me suis demandée si un phénotype horloge avait pu être masqué, dû à un entraînement stable de l'horloge du foie par l'horloge maîtresse du cerveau. J'ai donc commencé une série d'expériences ambitieuses (impliquant la mesure de la rythmicité du foie in vivo, chez l'animal vivant) afin de déséquilibrer l'entrainement de l'horloge hépatique via l'utilisation d'un protocole nutritionnel spécifique. Les premiers résultats suggèrent que dans des conditions où l'animal subit une restriction alimentaire pendant la journée, les miARN sont importants dans la cinétique d'adaptation des organes périphériques à un nouvel horaire de sustentation. Dans une deuxième ligne de recherche, j'ai plus profondément étudié quels seraient les miARN responsables des rythmes post-transcriptionnels des ARNm, en utilisant le séquençage de « small » ARN sur 24h. L'analyse est en cours et se poursuivra après l'obtention de mon diplôme. De façon générale, mon travail révèle d'importants et nouveaux rôles des miARN dans la modulation de l'expression circadienne des gènes hépatiques. De plus, le set de données générées dans l'étude déjà publiée, peut dorénavant servir de ressource valable pour de prochaines investigations sur le rôle physiologique que les miARN jouent au niveau du foie. -- Most living organisms have developed internal timing systems, called circadian clocks, to drive the rhythmic expression of genes involved in many molecular and behavioral processes. Over the last decade, microarray analyses and high- throughput sequencing from various mammalian tissues have indicated that up to 20% of the transcriptome are under circadian control. It was generally assumed that the majority of rhythmic mRNA accumulation is generated by rhythmic transcription. However, recent studies have suggested that a considerable proportion of mRNA cycling may actually be generated by post-transcriptional mechanisms, including by microRNAs. When I started my thesis work, it was still unknown how miRNAs influence circadian gene expression in a genome-wide fashion. Using a mouse model in which miRNA biogenesis can be inactivated in hepatocytes (conditional Dicer knockout mouse), I have thus addressed the role that these regulatory molecules play in rhythmic gene expression in the liver. Whole transcriptome sequencing revealed that the hepatic core clock was surprisingly resilient to total miRNA loss. However, we found that miRNAs acted as important regulators of clock-controlled gene expression. Co- regulation by miRNAs, which affected up to 30% of rhythmically transcribed genes, thus led to the modulation of phases and amplitudes of mRNA abundance rhythms. By contrast, only very few transcripts were strictly dependent on miRNAs for their rhythmic accumulation. Finally, my work highlights several specific miRNAs that appear to preferentially modulate cyclic gene expression, and identifies pathways in the liver that are particularly prone to dual regulation through miRNAs and the clock. The first bulk of analyses mainly dealt with the role that miRNAs play at the level of rhythmic clock output gene expression. In two follow-up studies I further delved into two additional, complementary aspects of how miRNAs and gene expression oscillations interact. First, I addressed whether a core clock phenotype in the hepatocyte-specific Dicer knockout could have been masked due to the stable entrainment of the liver clock by the animals' master clock in the brain. I thus started a series of ambitious experiments (involving the in vivo recording of liver rhythms in live animals) to bring the stable entrainment of the liver clock out of equilibrium using specific feeding protocols. My first results suggest that under conditions when animals are challenged by food restriction to daytime, miRNAs are important for the kinetics of adapting to unusual mealtime in peripheral tissue. In a second line of research, I have more carefully investigated which miRNAs are responsible for post- transcriptional mRNA rhythms using small RNA sequencing around-the-clock. The analyses are ongoing and will be continued after my graduation. Overall, my work uncovered important and novel roles of miRNA activity in shaping hepatic circadian gene expression; moreover, the datasets collect in the published studies can serve as a valuable resource for further investigations into the physiological roles that miRNAs play in liver. -- L'alternance du jour et de la nuit dirige depuis longtemps la vie quotidienne des êtres humains et de la plupart des organismes sur terre. Ce cycle de 24 heures façonne beaucoup de changements comportementaux et physiologiques tels que la vigilance, la température corporelle et le sommeil. Les rythmes journaliers, appelés rythmes circadiens, sont dirigés par des horloges biologiques tournant dans presque chaque cellule du corps. Une structure dans le cerveau agit en tant qu'horloge maitresse pour synchroniser les horloges internes entre elles et en fonction des signaux de jour/nuit extérieurs. Dans les cellules "les gènes de l'horloge" sont activés et désactivés une fois par jour ce qui déclenche des cycles dans lesquels des protéines sont produites de manière circadienne. Ces rythmes protéiques sont spécialisés pour chaque tissu ou organe et peuvent les aider à réaliser leurs tâches quotidiennes. Les rythmes circadiens peuvent être générés d'autres manières n'impliquant pas directement les composants des gènes de l'horloge. Les ARN messagers (ARNm) sont des molécules intermédiaires dans la production de protéines à partir d'ADN. Dans le foie des souris jusqu'à 20% des molécules d'ARNm sont produites suivant des rythmes circadiens. Le foie réalise des tâches essentielles dans le contrôle du métabolisme incluant celui des hydrates de carbone, des graisses et du cholestérol. Un timing précis est important afin de traiter les substances nutritives correctement lors des repas il en résulte une variation des quantités de certains ARNm et protéines coïncidant avec les repas. Les microARNs constituent une autre classe de molécules ARN de très petite taille qui régulent l'efficacité de traduction des ARNm en protéines et la stabilité des ARNm. Lors de mon travail de thèse, j'ai exploré de manière approfondie l'influence de ces petits régulateurs sur les rythmes circadiens du foie de souris. Ces expériences qui impliquaient le "Knock-out" d'un gène essentiel à la production de microARNs montrent qu'au lieu de générer les rythmes des ARNm, les microARNs les ajustent pour répondre aux besoins spécifiques du foie comme assurer leur pic au bon moment de la journée. Le ciblage de microARNs spécifiques peut révéler de nouvelles stratégies pour rectifier ces rythmes lorsque par exemple les fonctions métaboliques ne fonctionnent plus normalement. -- The rising and setting of the sun have long driven the daily schedules of humans and most organisms on the earth. This 24-hr cycle shapes many behavioural and physiological changes, such as alertness, body temperature, and sleep. These daily rhythms, which are called circadian rhythms, are dictated by biological clocks that are ticking in almost every single cell of the body. A region in the brain acts as a master clock to synchronize the internal clocks with each other and with the outside light/dark cycles. In cells, "core clock genes" are turned on and off once per day, which triggers cycles that cause some proteins to be produced in a circadian manner. The protein rhythms are specialized to a particular tissue or organ, and may help them to carry out their designated daily tasks. However, circadian rhythms might also be produced by other ways that do not involve these core clock components. Messenger RNAs (mRNAs) are intermediate molecules in the production of proteins from DNA. In the mouse liver, up to 20% of mRNA molecules are produced in circadian cycles. The liver performs essential tasks that control metabolism-including that of carbohydrates, fats, and cholesterol. Precisely timing when certain mRNAs and proteins reach peaks and troughs in their activities to coincide with mealtimes is important for nutrients to be properly processed. Other RNA molecules called microRNAs, i.e. RNAs of very small size, regulate at which rate mRNA molecules are translated into proteins. In my thesis work, I have explored at the influence of these small regulators on circadian rhythms in the mouse liver in greater detail. These experiments, which involved "knocking out" a gene that is essential for the production of microRNAs, show that rather than generating the mRNA rhythms, the microRNAs appear to adjust them to meet the specific needs of the liver, such as ensuring that they peak at the right time-of-day. Targeting specific microRNA molecules may reveal new strategies to tweak these rhythms, which could help to improve conditions when metabolic functions go wrong.
Resumo:
Majolica pottery was the most characteristic tableware produced in Spain during the Medieval and Renaissance periods. A study of the three main production centers in the historical region of Aragon during Middle Ages and Renaissance was conducted on a set of 71 samples. The samples were analyzed by instrumental neutron activation analysis (INAA), and the resulting data were interpreted using an array of multivariate statistical procedures. Our results show a clear discrimination among different production centers allowing a reliable provenance attribution of ceramic sherds from the Aragonese workshops.
Resumo:
Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain ketone body perfusion. This stimulated food intake was associated with an increased expression of the hypothalamic neuropeptides NPY and AgRP as well as phosphorylated AMPK and is due to ketone bodies sensed by the brain, as blood ketone body levels did not change at that time. In parallel, gluconeogenesis and insulin sensitivity were transiently altered. Indeed, a dysregulation of glucose production and insulin secretion was observed after 6 h of ketone body perfusion, which reversed to normal at 12 h of perfusion. Altogether, these results suggest that an increase in brain ketone body concentration leads to hyperphagia and a transient perturbation of peripheral metabolic homeostasis.
Resumo:
During a scientific field expedition to the Alai-Pamir range five specimens of the genus Gloydius have been collected in the larger Alai. A morphological and genetical examination of the specimens has shown that they are part of the G. halys complex, but represent a new taxon which is characterized by the following unique character combination: It is a slender and moderately stout small snake, up to 479 mm total length. The head has nine symmetrical plates on the upper head, 7 supralabial and 8-9 infralabial scales. Body scales in 20-22 rows around midbody, 143-156 ventral and 35-45 usually paired subcaudal scales. The cloacal plate not divided. The general coloration consists of various different tones of olive, tan and brown, having a distinct head, but an indistinct body pattern with, excluding the tail, 26-29 transverse crossbands, which are not extending to the sides of the body. The haplotype network shows the new species within the G. halys complex and close related to both, G. h. halys and G. h. caraganus. So far the new described species is only known from the Alai range. However, various Gloydius specimens are found in Kyrgyzstan and because of the complicated taxonomy those specimens have to re-identified to clarify their status and the status of the new species.
Resumo:
Waddlia chondrophila, an obligate intracellular bacterium belonging to the Chlamydiales order, is considered as an emerging pathogen. Some clinical studies highlighted a possible role of W. chondrophila in bronchiolitis, pneumonia and miscarriage. This pathogenic potential is further supported by the ability of W. chondrophila to infect and replicate within human pneumocytes, macrophages and endometrial cells. Considering that W. chondrophila might be a causative agent of respiratory tract infection, we developed a mouse model of respiratory tract infection to get insight into the pathogenesis of W. chondrophila. Following intranasal inoculation of 2 x 108 W. chondrophila, mice lost up to 40% of their body weight, and succumbed rapidly from infection with a death rate reaching 50% at day 4 post-inoculation. Bacterial loads, estimated by qPCR, increased from day 0 to day 3 post-infection and decreased thereafter in surviving mice. Bacterial growth was confirmed by detecting dividing bacteria using electron microscopy, and living bacteria were isolated from lungs 14 days post-infection. Immunohistochemistry and histopathology of infected lungs revealed the presence of bacteria associated with pneumonia characterized by an important multifocal inflammation. The high inflammatory score in the lungs was associated with the presence of pro-inflammatory cytokines in both serum and lungs at day 3 post-infection. This animal model supports the role of W. chondrophila as an agent of respiratory tract infection, and will help understanding the pathogenesis of this strict intracellular bacterium.
Resumo:
BACKGROUND: Plasmodium falciparum MSP2 is a blood stage protein that is associated with protection against malaria. It was shown that the MSP2 dimorphic (D) and constant (C) regions were well recognized by immune human antibodies, and were characterized by major conserved epitopes in different endemic areas and age groups. These Abs recognized merozoite-derived proteins in WB and IFA. Here, the goal was to determine in mice the immunogenicity of the two allelic MSP2 D and C domains formulated with different adjuvants, for their possible use in future clinical studies. METHOD: Female A/J, C3H, and ICR mice were immunized subcutaneously 3 times at 3-week interval with a mixture of allelic and conserved MSP2 long synthetic peptides formulated with different adjuvants. One week after the third injection, sera from each group were obtained and stored at -20°C for subsequent testing. RESULTS: Both domains of the two MSP2 families are immunogenic and the fine specificity and intensity of the Ab responses are dependent on mouse strains and adjuvants. The major epitopes were restricted to the 20-mer peptide sequences comprising the last 8aa of D and first 12aa of C of the two allelic families and the first 20aa of the C region, this for most strains and adjuvants. Strong immune responses were associated with GLA-SE adjuvant and its combination with other TLR agonists (CpG or GDQ) compared to alhydrogel and Montanide. Further, the elicited Abs were also capable of recognizing Plasmodium-derived MSP2 and inhibiting parasite growth in ADCI. CONCLUSION: The data provide a valuable opportunity to evaluate in mice different adjuvant and antigen formulations of a candidate vaccine containing both MSP2 D and C fragments. The formulations with GLA-SE seem to be a promising option to be compared with the alhydrogel one in human clinical trials.
Resumo:
In the rubber hand illusion tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first person perspective. For half the participants the VB was consistent in posture and movement with their own body, and in the other half there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared to the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full virtual body. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity - with proprioception and tactile sensations on the real body integrated with the visual presence of the virtual body. The results are interpreted in the framework of a"body matrix" recently introduced into the literature.
Resumo:
Improve the prediction of the vital and functional prognosis of comatose patients suffering from anoxic-ischemic encephalopathy after successful resuscitation from a cardiac arrest, addmitted to the Intensive Care and Coronary Units of the Dr. Josep Trueta Hospital, based on clinical, neurophysiological and biochemical results.The results of these different tests, revised and combined all together, will improve the prediction of the patients' prognosis, leading to an accurate vital and functional outcome, as they only have been studied separately so far. Anoxia is the third most frequent cause of coma, and the most common cause of post-anoxic coma in adults is the cardiac arrest. The incidence of hypoxic-ischemic brain injury is not well known, but it is certain that cardiac arrest, the most common cause of post-anoxic coma, affects approximately 24000 to 50000 Spanish people every year, most of them occuring out of the hospital. A cardiac arrest is the abrupt cessation of normal circulation of the blood due to failure of the heart to contract effectively during systole. It is different from, but may be caused by, a heart attack or myocardial infarction, where blood flow to the still-beating heart is interrupted. Arrested blood circulation prevents delivery of oxygen to all parts of the body. Cerebral hypoxia, or lack of oxygen supply to the brain, causes victims to lose consciousness and to stop normal breathing, although agonal breathing may still occur. Brain injury is likely if cardiac arrest is untreated for more than five minutes
Resumo:
The chemical stability of enalapril drug substance and tablets was studied by a stability-indicating liquid chromatographic method. Stress testing was performed on drug substance under various conditions. Accelerated stability testing was carried out for different formulations of enalapril tablets. Chromatographic separation was achieved on a RP-18 column, using a mobile phase of methanol phosphate buffer at 1.0 mL min"1 and UV detection. Degradation of the drug substance was greater under hydrolytic conditions. After 180 days of accelerated stability testing most enalapril tablets showed more than 10% of degradation. Enalapril drug substance and tablets showed instability under stress and accelerated testing respectively, with possible implications on the therapeutic activity.
Resumo:
Immaturity of the gut barrier system in the newborn has been seen to underlie a number of chronic diseases originating in infancy and manifesting later in life. The gut microbiota and breast milk provide the most important maturing signals for the gut-related immune system and reinforcement of the gut mucosal barrier function. Recently, the composition of the gut microbiota has been proposed to be instrumental in control of host body weight and metabolism as well as the inflammatory state characterizing overweight and obesity. On this basis, inflammatory Western lifestyle diseases, including overweight development, may represent a potential target for probiotic interventions beyond the well documented clinical applications. The purpose of the present undertaking was to study the efficacy and safety of perinatal probiotic intervention. The material comprised two ongoing, prospective, double-blind NAMI (Nutrition, Allergy, Mucosal immunology and Intestinal microbiota) probiotic interventions. In the mother-infant nutrition and probiotic study altogether 256 women were randomized at their first trimester of pregnancy into a dietary intervention and a control group. The intervention group received intensive dietary counselling provided by a nutritionist, and were further randomized at baseline, double-blind, to receive probiotics (Lactobacillus rhamnosus GG and Bifidobacterium lactis) or placebo. The intervention period extended from the first trimester of pregnancy to the end of exclusive breastfeeding. In the allergy prevention study altogether 159 women were randomized, double-blind, to receive probiotics (Lactobacillus rhamnosus GG) or placebo 4 weeks before expected delivery, the intervention extending for 6 months postnatally. Additionally, patient data on all premature infants with very low birth weight (VLBW) treated in the Department of Paediatrics, Turku University Hospital, during the years 1997 - 2008 were utilized. The perinatal probiotic intervention reduced the risk of gestational diabetes mellitus (GDM) in the mothers and perinatal dietary counselling reduced that of fetal overgrowth in GDM-affected pregnancies. Early gut microbiota modulation with probiotics modified the growth pattern of the child by restraining excessive weight gain during the first years of life. The colostrum adiponectin concentration was demonstrated to be dependent on maternal diet and nutritional status during pregnancy. It was also higher in the colostrum received by normal-weight compared to overweight children at the age of 10 years. The early perinatal probiotic intervention and the postnatal probiotic intervention in VLBW infants were shown to be safe. To conclude, the findings in this study provided clinical evidence supporting the involvement of the initial microbial and nutritional environment in metabolic programming of the child. The manipulation of early gut microbial communities with probiotics might offer an applicable strategy to impact individual energy homeostasis and thus to prevent excessive body-weight gain. The results add weight to the hypothesis that interventions aiming to prevent obesity and its metabolic consequences later in life should be initiated as early as during the perinatal period.