975 resultados para Ford automobile
Resumo:
Young drivers are the group of drivers most likely to crash. There are a number of factors that contribute to the high crash risk experienced by these drivers. While some of these factors are intrinsic to the young driver, such as their age, gender or driving skill, others relate to social factors and when and how often they drive. This article reviews the factors that affect the risk of young drivers crashing to enable a fuller understanding of why this risk is so high in order to assist in developing effective countermeasures.
Resumo:
China is becoming an increasingly important automotive market. Customer’s vehicle usage, preferences and requirements differ from traditional western markets in a number of aspects – rear seat usage rates are higher, vehicles are used for business purposes as well as for private transport and rear seat usage is generally more important to Chinese customers compared to their western counterparts. The purpose of this project is to dimension and investigate these differences from an ergonomics perspective and use these results to guide the design of future products. The focus for this project will be specific to vehicles in the CD segment. More specifically, this project focuses on the second row ‘ambience’. Ambience refers to the global feeling perceived by second row passengers, and the main factors contributing to ambience are: ingress and egress comfort, seat comfort, roominess, and ease of use of the controls. In order to investigate the aforementioned parameters, an experimental study has been conducted in Shanghai, China. This experiment involved 80 healthy Chinese CD- and D-car customers. These subjects were asked to evaluate different features present in the second row environment of three different cars: A Ford Mondeo, Toyota Camry and Mercedes S-class. Various data has been collected during this experiment: First, the anthropometric dimensions of the subjects have been measured. The subjects were also asked to fill a questionnaire about demographics, their own car usage, and their perception of a various number of features present in the three tested cars. A great amount of technical data was also collected. The first part of this report presents the results given by the questionnaires. It includes Chinese demographics, vehicle usage habits, and the subjective perception of the features present in the tested cars. It also presents the results of the anthropometric measurements. This gives a first insight into Chinese customers’ habits and preferences. The second part deals with the technical data recorded during the experiment: second row seat adjustment ranges, roominess, optimal location of controls, and pressure mapping analysis. Analysis of technical data allows a deeper understanding of the factors contributing to comfort and ambience perception. Using the technical data together with the comfort ratings given by the subjects in the questionnaire, recommendations on several design parameters were provided. Finally, an experimental study of car ingress-egress has been conducted in a University laboratory controlled environment. During this study, the ingress and egress motion of 20 customers from Chinese origin was recorded using a motion capture system. The last part of this report presents the protocol and data processing that led to building an ingress-egress motion database that was provided to Ford.
Resumo:
Many intervention programs have been designed to decrease the rate of drink driving by altering the behavioural characteristics that may lead a person to drink and drive. However, most programs target high risk and repeat offenders. There is very little research on the feasibility and effectiveness of first offender programs. This project is part of a larger program of research that focuses on first time offenders, in order to reduce the rate of subsequent drink driving which may result in a repeat offence. A number of professional stakeholders were approached and interviewed with a view to capturing and reflecting current drink driving related concerns while developing an intervention in the context of Australian drink driving related legislation. The qualitative interviews involved open ended questioning which led to the themes discussed in the analysis. Included in the interviews were senior representatives from the Magistrates Court, Queensland Transport, Probation & Parole, Queensland Corrective Services, Royal Automobile Club Queensland (RACQ), Intraface Consulting (drug & alcohol EAP), Brisbane Police Prosecution Corps, Queensland Police Service and private practice psychology. Issues such as delivery of interventions, feasibility and cost-effectiveness were discussed, as were potential content and design. It was generally agreed that a tailored online intervention imposed as a sentencing option would be the most effective for first time offenders in terms of cost, ease of delivery and feasibility. The development of an online intervention program for first offenders is widely supported by professional stakeholders.
Resumo:
Introduction: Built environment interventions designed to reduce non-communicable diseases and health inequity, complement urban planning agendas focused on creating more ‘liveable’, compact, pedestrian-friendly, less automobile dependent and more socially inclusive cities.However, what constitutes a ‘liveable’ community is not well defined. Moreover, there appears to be a gap between the concept and delivery of ‘liveable’ communities. The recently funded NHMRC Centre of Research Excellence (CRE) in Healthy Liveable Communities established in early 2014, has defined ‘liveability’ from a social determinants of health perspective. Using purpose-designed multilevel longitudinal data sets, it addresses five themes that address key evidence-base gaps for building healthy and liveable communities. The CRE in Healthy Liveable Communities seeks to generate and exchange new knowledge about: 1) measurement of policy-relevant built environment features associated with leading non-communicable disease risk factors (physical activity, obesity) and health outcomes (cardiovascular disease, diabetes) and mental health; 2) causal relationships and thresholds for built environment interventions using data from longitudinal studies and natural experiments; 3) thresholds for built environment interventions; 4) economic benefits of built environment interventions designed to influence health and wellbeing outcomes; and 5) factors, tools, and interventions that facilitate the translation of research into policy and practice. This evidence is critical to inform future policy and practice in health, land use, and transport planning. Moreover, to ensure policy-relevance and facilitate research translation, the CRE in Healthy Liveable Communities builds upon ongoing, and has established new, multi-sector collaborations with national and state policy-makers and practitioners. The symposium will commence with a brief introduction to embed the research within an Australian health and urban planning context, as well as providing an overall outline of the CRE in Healthy Liveable Communities, its structure and team. Next, an overview of the five research themes will be presented. Following these presentations, the Discussant will consider the implications of the research and opportunities for translation and knowledge exchange. Theme 2 will establish whether and to what extent the neighbourhood environment (built and social) is causally related to physical and mental health and associated behaviours and risk factors. In particular, research conducted as part of this theme will use data from large-scale, longitudinal-multilevel studies (HABITAT, RESIDE, AusDiab) to examine relationships that meet causality criteria via statistical methods such as longitudinal mixed-effect and fixed-effect models, multilevel and structural equation models; analyse data on residential preferences to investigate confounding due to neighbourhood self-selection and to use measurement and analysis tools such as propensity score matching and ‘within-person’ change modelling to address confounding; analyse data about individual-level factors that might confound, mediate or modify relationships between the neighbourhood environment and health and well-being (e.g., psychosocial factors, knowledge, perceptions, attitudes, functional status), and; analyse data on both objective neighbourhood characteristics and residents’ perceptions of these objective features to more accurately assess the relative contribution of objective and perceptual factors to outcomes such as health and well-being, physical activity, active transport, obesity, and sedentary behaviour. At the completion of the Theme 2, we will have demonstrated and applied statistical methods appropriate for determining causality and generated evidence about causal relationships between the neighbourhood environment, health, and related outcomes. This will provide planners and policy makers with a more robust (valid and reliable) basis on which to design healthy communities.
Resumo:
This is a reply to "Comment on 'Online Estimation of Allan Variance Parameters' " by James C.Wilcox published in JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS Vol. 24, No. 3, May–June 2001. OUR statement “Modern gyros provide angular rate measurements directly, and hence, angular quantization is meaningless” made in the original paper should first be read with the accompanying sentences in the paragraph. The meaning of the sentence would perhaps have been clearer if written". . .
Resumo:
A new online method is presented for estimation of the angular randomwalk and rate randomwalk coefficients of inertial measurement unit gyros and accelerometers. In the online method, a state-space model is proposed, and recursive parameter estimators are proposed for quantities previously measured from offline data techniques such as the Allan variance method. The Allan variance method has large offline computational effort and data storage requirements. The technique proposed here requires no data storage and computational effort of approximately 100 calculations per data sample.
Resumo:
This paper presents new schemes for recursive estimation of the state transition probabilities for hidden Markov models (HMM's) via extended least squares (ELS) and recursive state prediction error (RSPE) methods. Local convergence analysis for the proposed RSPE algorithm is shown using the ordinary differential equation (ODE) approach developed for the more familiar recursive output prediction error (RPE) methods. The presented scheme converges and is relatively well conditioned compared with the ...
Resumo:
In this paper new online adaptive hidden Markov model (HMM) state estimation schemes are developed, based on extended least squares (ELS) concepts and recursive prediction error (RPE) methods. The best of the new schemes exploit the idempotent nature of Markov chains and work with a least squares prediction error index, using a posterior estimates, more suited to Markov models then traditionally used in identification of linear systems.
Resumo:
This paper develops maximum likelihood (ML) estimation schemes for finite-state semi-Markov chains in white Gaussian noise. We assume that the semi-Markov chain is characterised by transition probabilities of known parametric from with unknown parameters. We reformulate this hidden semi-Markov model (HSM) problem in the scalar case as a two-vector homogeneous hidden Markov model (HMM) problem in which the state consist of the signal augmented by the time to last transition. With this reformulation we apply the expectation Maximumisation (EM ) algorithm to obtain ML estimates of the transition probabilities parameters, Markov state levels and noise variance. To demonstrate our proposed schemes, motivated by neuro-biological applications, we use a damped sinusoidal parameterised function for the transition probabilities.
Resumo:
This paper investigates demodulation of differentially phase modulated signals DPMS using optimal HMM filters. The optimal HMM filter presented in the paper is computationally of order N3 per time instant, where N is the number of message symbols. Previously, optimal HMM filters have been of computational order N4 per time instant. Also, suboptimal HMM filters have be proposed of computation order N2 per time instant. The approach presented in this paper uses two coupled HMM filters and exploits knowledge of ...
Resumo:
In this paper we propose and study low complexity algorithms for on-line estimation of hidden Markov model (HMM) parameters. The estimates approach the true model parameters as the measurement noise approaches zero, but otherwise give improved estimates, albeit with bias. On a nite data set in the high noise case, the bias may not be signi cantly more severe than for a higher complexity asymptotically optimal scheme. Our algorithms require O(N3) calculations per time instant, where N is the number of states. Previous algorithms based on earlier hidden Markov model signal processing methods, including the expectation-maximumisation (EM) algorithm require O(N4) calculations per time instant.
Resumo:
In this paper, we propose a risk-sensitive approach to parameter estimation for hidden Markov models (HMMs). The parameter estimation approach considered exploits estimation of various functions of the state, based on model estimates. We propose certain practical suboptimal risk-sensitive filters to estimate the various functions of the state during transients, rather than optimal risk-neutral filters as in earlier studies. The estimates are asymptotically optimal, if asymptotically risk neutral, and can give significantly improved transient performance, which is a very desirable objective for certain engineering applications. To demonstrate the improvement in estimation simulation studies are presented that compare parameter estimation based on risk-sensitive filters with estimation based on risk-neutral filters.
Resumo:
A new online method is presented for estimation of the angular random walk and rate random walk coefficients of IMU (inertial measurement unit) gyros and accelerometers. The online method proposes a state space model and proposes parameter estimators for quantities previously measured from off-line data techniques such as the Allan variance graph. Allan variance graphs have large off-line computational effort and data storage requirements. The technique proposed here requires no data storage and computational effort of O(100) calculations per data sample.
Resumo:
In this paper conditional hidden Markov model (HMM) filters and conditional Kalman filters (KF) are coupled together to improve demodulation of differential encoded signals in noisy fading channels. We present an indicator matrix representation for differential encoded signals and the optimal HMM filter for demodulation. The filter requires O(N3) calculations per time iteration, where N is the number of message symbols. Decision feedback equalisation is investigated via coupling the optimal HMM filter for estimating the message, conditioned on estimates of the channel parameters, and a KF for estimating the channel states, conditioned on soft information message estimates. The particular differential encoding scheme examined in this paper is differential phase shift keying. However, the techniques developed can be extended to other forms of differential modulation. The channel model we use allows for multiplicative channel distortions and additive white Gaussian noise. Simulation studies are also presented.