954 resultados para Fluidos corporales
Resumo:
Multiphase flows in ducts can adopt several morphologies depending on the mass fluxes and the fluids properties. Annular flow is one of the most frequently encountered flow patterns in industrial applications. For gas liquid systems, it consists of a liquid film flowing adjacent to the wall and a gas core flowing in the center of the duct. This work presents a numerical study of this flow pattern in gas liquid systems in vertical ducts. For this, a solution algorithm was developed and implemented in FORTRAN 90 to numerically solve the governing transport equations. The mass and momentum conservation equations are solved simultaneously from the wall to the center of the duct, using the Finite Volumes Technique. Momentum conservation in the gas liquid interface is enforced using an equivalent effective viscosity, which also allows for the solution of both velocity fields in a single system of equations. In this way, the velocity distributions across the gas core and the liquid film are obtained iteratively, together with the global pressure gradient and the liquid film thickness. Convergence criteria are based upon satisfaction of mass balance within the liquid film and the gas core. For system closure, two different approaches are presented for the calculation of the radial turbulent viscosity distribution within the liquid film and the gas core. The first one combines a k- Ɛ one-equation model and a low Reynolds k-Ɛ model. The second one uses a low Reynolds k- Ɛ model to compute the eddy viscosity profile from the center of the duct right to the wall. Appropriate interfacial values for k e Ɛ are proposed, based on concepts and ideas previously used, with success, in stratified gas liquid flow. The proposed approaches are compared with an algebraic model found in the literature, specifically devised for annular gas liquid flow, using available experimental results. This also serves as a validation of the solution algorithm
Resumo:
From what was stated in the Montreal Protocol, the researchers and refrigeration industry seek substitutes for synthetic refrigerants -chlorofluorocarbons (CFCs) and HCFCs (HCFC) - that contribute to the depletion of the ozone layer. The phase-out of these substances was started using as one of the replacement alternatives the synthetic fluids based on hydro fluorocarbons (HFCs) that have zero potential depletion of the ozone layer. However, contribute to the process of global warming. HFC refrigerants are greenhouse gases and are part of the group of gases whose emissions must be reduced as the Kyoto Protocol says. The hydrocarbons (HC's), for not contribute to the depletion of the ozone layer, because they have very low global warming potential, and are found abundantly in nature, has been presented as an alternative, and therefore, are being used in new home refrigeration equipment in several countries. In Brazil, due to incipient production of domestic refrigerators using HC's, the transition refrigerants remain on the scene for some years. This dissertation deals with an experimental evaluation of the conduct of a drinking fountain designed to work with HFC (R-134a), operating with a mixture of HC's or isobutane (R-600a) without any modification to the system or the lubricating oil. In the refrigeration laboratory of Federal University of Rio Grande do Norte were installed, in a drinking fountain, temperature and pressure sensors at strategic points in the refrigeration cycle, connected to an acquisition system of computerized data, to enable the mapping and thermodynamics analysis of the device operating with R-134a or with a mixture of HC's or with R-600a. The refrigerator-test operating with the natural fluids (mixture of HC's or R-600a) had a coefficient of performance (COP) lower than the R-134a
Resumo:
The progressing cavity pumping (PCP) is one of the most applied oil lift methods nowadays in oil extraction due to its ability to pump heavy and high gas fraction flows. The computational modeling of PCPs appears as a tool to help experiments with the pump and therefore, obtain precisely the pump operational variables, contributing to pump s project and field operation otimization in the respectively situation. A computational model for multiphase flow inside a metallic stator PCP which consider the relative motion between rotor and stator was developed in the present work. In such model, the gas-liquid bubbly flow pattern was considered, which is a very common situation in practice. The Eulerian-Eulerian approach, considering the homogeneous and inhomogeneous models, was employed and gas was treated taking into account an ideal gas state. The effects of the different gas volume fractions in pump volumetric eficiency, pressure distribution, power, slippage flow rate and volumetric flow rate were analyzed. The results shown that the developed model is capable of reproducing pump dynamic behaviour under the multiphase flow conditions early performed in experimental works
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
One of the current major concerns in engineering is the development of aircrafts that have low power consumption and high performance. So, airfoils that have a high value of Lift Coefficient and a low value for the Drag Coefficient, generating a High-Efficiency airfoil are studied and designed. When the value of the Efficiency increases, the aircraft s fuel consumption decreases, thus improving its performance. Therefore, this work aims to develop a tool for designing of airfoils from desired characteristics, as Lift and Drag coefficients and the maximum Efficiency, using an algorithm based on an Artificial Neural Network (ANN). For this, it was initially collected an aerodynamic characteristics database, with a total of 300 airfoils, from the software XFoil. Then, through the software MATLAB, several network architectures were trained, between modular and hierarchical, using the Back-propagation algorithm and the Momentum rule. For data analysis, was used the technique of cross- validation, evaluating the network that has the lowest value of Root Mean Square (RMS). In this case, the best result was obtained for a hierarchical architecture with two modules and one layer of hidden neurons. The airfoils developed for that network, in the regions of lower RMS, were compared with the same airfoils imported into the software XFoil
Resumo:
The lubricants found in the market are of mineral or synthetic origin and harm to humans and the environment, mainly due to their improper discard. Therefore industries are seeking to develop products that cause less environmental impact, so to decrease mainly, operator aggression the Cutting Fluids became an emulsion of oil / water or water / oil. However, the emulsion was not considered the most suitable solution for environmental question, therefore the search for biodegradable lubricants and which no are toxic continues and so vegetable oils are seen, again, as a basis for the production of lubricants. The biggest problem with these oils is their oxidative instability that is intensified when working at high temperatures. The process transesterification decreases the oxidation, however changes some physical and chemical properties. Therefore soybean oil after the transesterification process was subjected to tests of density, dynamic viscosity, kinematic viscosity which is calculated from two parameters mentioned, flash point and acidity. Besides the physico-chemical test the soybean oil was subjected to a dynamic test in a tribometer adapted from a table vise, whose induced wear was the adhesive and ultimately was used as cutting fluid in a process of turning in two different materials, steel 1045 and cast iron. This latter test presented results below the mineral cutting fluid which it was compared in all tests, already in other experiments the result was satisfactory and other experiments not, so that chemical additives can be added to the oil analyzed to try equate all parameters and so formulate a biolubrificante not toxic to apply in machining processes of metalworking industry
Resumo:
Cotton is a hydrofilic textile fiber and, for this reason, it changes its properties according to the environment changes. Moisture and Temperature are the two most important factors that lead a cotton Spinning sector and influence its quality. Those two properties can change the entire Spinning process. Understanding this, moisture and temperature must be kept under control when used during the Spinning process, once the environment is hot and dry, the cotton yarns absorb moisture and lose the minimal consistency. According to this information, this paper was developed testing four types of cotton yarns, one kind of cotton from Brazil and the others from Egypt. The yarns were exposed to different temperatures and moisture in five different tests and in each test, six samples that were examined through physical and mechanical tests: resistance, strength, tenacity, yarn´s hairness, yarn´s evenness and yarn´s twisting. All the analysis were accomplished at Laboratório de Mecânica dos Fluídos and at COATS Corrente S.A., where, it was possible to use the equipments whose were fundamental to develop this paper, such as the STATIMAT ME that measures strength, tenacity, Zweigler G566, that measure hairiness in the yarn, a skein machine and a twisting machine. The analysis revealed alterations in the yarn´s characteristics in a direct way, for example, as moisture and temperature were increased, the yarn´s strength, tenacity and hairness were increased as well. Having the results of all analysis, it is possible to say that a relatively low temperature and a high humidity, cotton yarns have the best performance
Resumo:
Petroleum is a complex combination of various classes of hydrocarbons, with paraffinic, naphtenic and aromatic compounds being those more commonly found in its composition. The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, enhanced recovery methods are cited in applications where conventional techniques have proven to be little effective. The injection of surfactant solutions as an enhanced recovery method is advantageous in that surfactants are able to reduce the interfacial tensions between water and oil, thus augmenting the displacement efficiency and, as a consequence, increasing the recovery factor. This work aims to investigate the effects of some parameters that influence the surfactant behavior in solution, namely the type of surfactant, the critical micelle concentration (CMC) and the surface and interface tensions between fluids. Seawater solutions containing the surfactants PAN, PHN and PJN have been prepared for presenting lower interfacial tensions with petroleum and higher stability under increasing temperature and salinity. They were examined in an experimental apparatus designed to assess the recovery factor. Botucatu (Brazil) sandstone plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The plugs had porosity between 29.6 and 32.0%, with average effective permeability to water of 83 mD. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater
Resumo:
The determination of the rheology of drilling fluids is of fundamental importance to select the best composition and the best treatment to be applied in these fluids. This work presents a study of the rheological behavior of some addictives used as viscosifiers in water-based drilling fluids. The evaluated addictives were: Carboxymethylcellulose (CMC), Xanthan gum (GX), and Bentonite. The main objective was to rheologically characterize suspensions composed by these addictives, by applying mathematical models for fluid flow behavior, in order to determine the best flow equation to represent the system, as well as the model parameters. The mathematical models applied in this research were: the Bingham Model, the Ostwald de Wale Model, and the Herschel-Bulkley Model. A previous study of hydration time for each used addictive was accomplished seeking to evaluate the effect of polymer and clay hydration on rheological behavior of the fluid. The rheological characterization was made through typical rheology experiments, using a coaxial cylinder viscosimeter, where the flow curves and the thixotropic magnitude of each fluid was obtained. For each used addictive the rheological behavior as a function of temperature was also evaluated as well as fluid stability as a function of the concentration and kind of addictive used. After analyses of results, mixtures of polymer and clay were made seeking to evaluate the rheological modifications provided by the polymer incorporation in the water + bentonite system. The obtained results showed that the Ostwald de Waale model provided the best fit for fluids prepared using CMC and for fluids with Xanthan gum and Bentonite the best fit was given by the Herschel-Bulkley one
Resumo:
The extraction with pressurized fluids has become an attractive process for the extraction of essential oils, mainly due the specific characteristics of the fluids near the critical region. This work presents results of the extraction process of the essential oil of Cymbopogon winterianus J. with CO2 under high pressures. The effect of the following variables was evaluated: solvent flow rate (from 0.37 to 1.5 g CO2/min), pressure (66.7 and 75 bar) and temperature (8, 10, 15, 20 and 25 ºC) on the extraction kinetics and the total yield of the process, as well as in the solubility and composition of the C. winterianus essential oil. The experimental apparatus consisted of an extractor of fixed bed and the dynamic method was adopted for the calculation of the oil solubility. Extractions were also accomplished by conventional techniques (steam and organic solvent extraction). The determination and identification of extract composition were done by gas chromatography coupled with a mass spectrometer (GC-MS). The extract composition varied in function of the studied operational conditions and also related to the used extraction method. The main components obtained in the CO2 extraction were elemol, geraniol, citronellol and citronellal. For the steam extraction were the citronellal, citronellol and geraniol and for the organic solvent extraction were the azulene and the hexadecane. The most yield values (2.76%) and oil solubility (2.49x10-2 g oil/ g CO2) were obtained through the CO2 extraction in the operational conditions of T = 10°C, P = 66.7 bar and solvent flow rate 0.85 g CO2/min
Resumo:
Milk from different animals can be used for dairy production. Yoghurt is a popular fermented milk product and considered to be one of the greatest importance in terms of consumer acceptance and consumption. The present research deals with the production of strawberry set-type yoghurt by mixing goat and buffalo s milk and it has the objective of taking advantage of the intrinsic characteristics of each milk to produce a final product with desirable attributes. It was conducted by analyzing five experimental groups with different proportions of goat and buffalo s milk: C 100% goat s milk; 7C3B - 70% goat s milk and 30% buffalo s milk, 5C5B - 50% goat s milk and 50% buffalo s milk, 3C7B 30% goat s milk and 70% buffalo s milk; B - 100% buffalo s milk. Each group was evaluated for total solids content and the acidification profile was monitored every 30 minutes by pH analysis. The yoghurt samples were analyzed for physical-chemical (pH, acidity, protein, fat, total and reducing sugars, ash and total solids), rheological (syneresis and viscosity) and sensory characteristics (appearance, odor, consistency and flavour). Samples with higher percentual of bubaline milk reached Vm faster, but the time necessary for pH 4.6 (Te) were similar between groups. Statistical differences (p<0.05) were observed for fat and total solids content of yoghurt, with superior values for groups higher proportions of buffalo s milk. The parameters of behavior reached by the model of Ostwald of Waale pointed yoghurt samples as non-Newtonian and pseudoplastic fluids. Yoghurt made only with goat s milk (C) had higher values (p<0.05) for syneresis, which can be explained by its fragile coagulum. Additionally, this group also had the lowest sensory scores for the attributes consistence and taste, while bubaline yoghurt (B) obtained the best acceptance indexes for all of the appraised parameters
Resumo:
The objective of this study was to evaluate the displacement of petroleum/diesel solutions, at different concentrations, observing the effect of ultrasonic vibrations in fluids present in porous media to obtain an increase in oil production. The bubbles produced by ultrasound implode asymmetrically in the rock, generating liquid jets with high speed, displacing the oil present in porous media. The oil/diesel solutions were prepared with concentrations ranging from 20 g/L to 720 g/L in oil in relation to diesel and its viscosities were obtained in a Brookfield Rheometer RS2000, with temperature ranging from 25 to 55 °C. After, calculations were performed to obtain the activation energy data for oil/diesel solutions. For oil recovery experiments, cylindrical samples of porous rock (core samples), with resin around the perimeter and its two circular bases free to allow the passage of fluids, were first saturated with 2% KCl solution and after with oil solutions. The results of oil extraction were satisfactory for all studied solutions, being obtained up to 68% partial displacement with saline solution injection. The ultrasound system was used after saline injection, increasing oil displacement, with oil extractions ranging from 63% to 79%. During the experiments, it was observed the warming of core samples, helping to reduce the viscosity of more concentrated systems, and consequently enhancing the percentage of advanced recovery for all studied solutions
Resumo:
The large investment in exploration activities offshore Brazil has generated new findings, generally in carbonate reservoirs, with different wettability conditions usually considered in the sandstone, strongly water-wet. In general, the carbonates reservoirs tend to be oil-wet, it difficult to mobilize of oil these reservoirs. These oils can be mobilized by different methods, or it may reverse the wettability of the surface of the reservoir and facilitate the flow of oil, improving production rates. Thus, the objective of this work was to study the influence of inversion on the wettability of the rock in the production and recovery of petroleum from carbonate reservoirs, using microemulsions. Three systems were chosen with different classes of surfactants: a cationic (C16TAB), an anionic (SDS) and nonionic (Unitol L90). Studies of the influence of salinity on the formation of the microemulsion as well as the characterization of fluids using density and viscosity measurements were also performed. To verify the potential of microemulsion systems in changing the wettability state of the chalk oil-wet to water-wet, contact angle measurements were performed using chalk of neutral-wet as surface material. Overall, with respect to the ionic character of the surfactants tested, the cationic surfactant (C16TAB) had a greater potential for reversal in wettability able to transform the rock wettability neutral to strongly water-wet, when compared with the anionic surfactant (SDS) and nonionic (Unitol L90), which showed similar behavior, improving the wettability of the rock to water. The microemulsions of all surfactants studied were effective in oil recovery, resulting in 76.92% for the system with C16TAB, 67.42% for the SDS and 66.30% for Unitol L90 of residual oil
Resumo:
Petroleum exists in the nature in certain underground formations where it is adsorbed into the rocks pores. For the conventional recovery methods usually only 30% of the oil is extracted and this can be credited, basically, to three aspects: high viscosity of the oil, geology of the formation and high interfacial tensions between the reservoir s fluids. The enhanced recovery methods use the injection of a fluid or fluids mixture in a reservoir to act in points where the conventional process didn't reach the recovery rates. Microemulsion flooding, considered an enhanced method, has the purpose to desorb the oil from the rock formation and to attain an efficient displacement of the oil emulsion. With this in mind, this work was accomplished with two main objectives: the study of the parameters effect that influence a microemulsified system (surfactant and cosurfactant types, C/S rate and salinity) and the evaluation of displacement efficiency with the microemulsions that showed stability in the rich aqueous area. For the analyzed parameters it was chose the microemulsions composition used in the recovery stage: 25% water, 5% kerosene, 46.7% of butanol as cosurfactant and 23.3% of BC or SCO cosurfactant. The core plugs of Assu and Botucatu sandstones were appraised in porosity and permeability tests and then submitted to the steps of saturation with seawater and oil, conventional recovery with water and enhanced recovery with the selected microemulsions. The Botucatu sandstone presented better recovery parameters, and the microemulsion composed with BS surfactant had larger recovery efficiency (26.88%)
Resumo:
Biosurfactants are amphiphilic molecules synthesized by microorganisms such as bacteria, yeast or filamented fungi cultivated in various carbon sources among sucrose and hydrocarbons. These molecules are composed by a hydrophilic and hydrophobic part. They operate mostly at interfaces of fluids of different polarities. Because of this characteristic, they are potentially employed in numerous industries, such as the textile, medical, cosmetics, food and mainly in the petrochemical ones. Therefore industry has interest in developing new biosurfactant production processes in high scale, in order to become them economically competitive when compared to synthetic biosurfactants. This work aims to evaluate the biosurfactant production applying a non-conventional substrate sugar cane molasses proceeding from the sugar industry thus reducing the production costs. The strain identified as AP029/GLIIA, isolated from oil wells in Rio Grande do Norte state and used in these experiments belongs to the culture collection of Antibiotics Department of UFPE. The fermentation were carried out using different conditions according to a factorial planning 24 with duplicate at center point, in which the studied factors were molasse concentration, nitrate concentration, agitation and aeration ratio. The experiments were performed in a shaker at 38ºC of temperature. Samples were withdrawn in regular periods of time of up to 72 hours of fermentation in order to analyze substrate consumption, cellular concentration, superficial tension, critical micelle dilution (CMD-1 e CMD-2) as well as extracelullar protein production. The results showed a production of 3,480 g/L of biomass, a reduction of 41% on superficial tension, 67% of substrate consumption and 0,2805 g/L of extracellular protein