973 resultados para Flow separation
Resumo:
In this paper we have investigated the instability of the self-similar flow behind the boundary of a collapsing cavity. The similarity solutions for the flow into a cavity in a fluid obeying a gas law p = Kργ, K = constant and 7 ≥ γ > 1 has been solved by Hunter, who finds that for the same value of γ there are two self-similar flows, one with accelerating cavity boundary and other with constant velocity cavity boundary. We find here that the first of these two flows is unstable. We arrive at this result only by studying the propagation of disturbances in the neighbourhood of the singular point.
Resumo:
We consider the secondary flows arising in the motion of a Maxwell fluid between two rotating coaxial cones having the same vertex. We find that in any meridian plane passing through the common axis of the cones, the flow field is divided into two regions. Such a division of flow field was first reported by Bhatnagar and Rathna.
Resumo:
Following the method due to Bhatnagar (P. L.) [Jour. Ind. Inst. Sic., 1968, 1, 50, 1], we have discussed in this paper the problem of suction and injection and that of heat transfer for a viscous, incompressible fluid through a porous pipe of uniform circular cross-section, the wall of the pipe being maintained at constant temperature. The method utilises some important properties of differential equations and some transformations that enable the solution of the two-point boundary value and eigenvalue problems without using trial and error method. In fact, each integration provides us with a solution for a suction parameter and a Reynolds number without imposing the conditions of smallness on them. Investigations on non-Newtonian fluids and on other bounding geometries will be published elsewhere.
Resumo:
The method of discrete ordinates, in conjunction with the modified "half-range" quadrature, is applied to the study of heat transfer in rarefied gas flows. Analytic expressions for the reduced distribution function, the macroscopic temperature profile and the heat flux are obtained in the general n-th approximation. The results for temperature profile and heat flux are in sufficiently good accord both with the results of the previous investigators and with the experimental data.
Resumo:
The significant correlation coefficient between the terrestial heat flow and thermal conductivity computed from the continental heat flow data by Horai and Nur [1]2) may be explained as a natural consequence of terrestrial heat flow through a random medium. The theory predicts a value of 0.40 for the correlation coefficient. A simple statistical test shows that the majority of the computed coefficients belong to the statistical population whose mean is equal to the theoretical correlation coefficient. There are, however, a few observations of unsually high correlation coefficient which cannot be explained by the above hypothesis.
Resumo:
Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment.The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The steady flow of a power law fluid in annuli with porous walls is investigated. The solution for the axial velocity component is obtained as a power series in terms of the cross flow Reynolds number, the first term of the series giving the solution for the case of the solid wall annulus. The cross flow is restricted to be such that the rate of injection of fluid at one wall of the annulus is equal to the rate of suction at the other wall and also we have considered only very small values of the cross flow velocity. The velocity profiles are drawn for different values of n and for different gaps and the results are discussed in detail. The behaviour of the average flux, in different eases is also discussed.
Resumo:
In this paper, the steady laminar viscous hypersonic flow of an electrically conducting fluid in the region of the stagnation point of an insulating blunt body in the presence of a radial magnetic field is studied by similarity solution approach, taking into account the variation of the product of density and viscosity across the boundary layer. The two coupled non-linear ordinary differential equations are solved simultaneously using Runge-Kutta-Gill method. It has been found that the effect of the variation of the product of density and viscosity on skin friction coefficient and Nusselt number is appreciable. The skin friction coefficient increases but Nusselt number decreases as the magnetic field or the total enthalpy at the wall increases
Resumo:
The flow of an incompressible non-Newtonian viscous fluid contained between two torsionally oscillating infinite parallel discs is investigated. The two specific cases studied are (i) one disc only oscillates while the other is at rest and (ii) both discs oscillate with the same frequency and amplitude but in opposite directions. Assuming that the amplitude of oscillation,Ω/n, is small and neglecting the squares and higher powers ofΩ/n, the equations of motion have been solved exactly for velocity and pressure satisfying all the boundary conditions. The effect of both positive and negative coefficients of cross-viscosity on the steady components of the flow has been represented graphically.
Resumo:
In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,