914 resultados para Flooded restinga forest
Resumo:
In recent years, researchers and policy makers have recognized that nontimber forest products (NTFPs) extracted from forests by rural people can make a significant contribution to their well-being and to the local economy. This study presents and discusses data that describe the contribution of NTFPs to cash income in the dry deciduous forests of Orissa and Jharkhand, India. In its focus on cash income, this study sheds light on how the sale of NTFPs and products that use NTFPs as inputs contribute to the rural economy. From analysis of a unique data set that was collected over the course of a year, the study finds that the contribution of NTFPs to cash income varies across ecological settings, seasons, income level, and caste. Such variation should inform where and when to apply NTFP forest access and management policies.
Resumo:
When villagers extract resources, such as fuelwood, fodder, or medicinal plants from forests, their decisions over where and how much to extract are influenced by market conditions, their particular opportunity costs of time, minimum consumption needs, and access to markets. This paper develops an optimization model of villagers’ extraction behavior that clarifies how, and under what conditions, policies that create incentives such as improved returns to extraction in a buffer zone might be used instead of adversarial enforcement efforts to protect a forest’s pristine ‘‘inner core.’’
Resumo:
This chapter takes the example of local African beekeeping to explore how the forest can act as an important locus for men's work in Western Tanzania. Here we scrutinise how beekeeping enables its practitioners to situate themselves in the forest locality and observe how the social relationships, interactions and everyday practices entailed in living and working together are a means through which beekeepers generate a sense of belonging and identity. As part and parcel of this process, men transmit their skills to a new generation, thus reproducing themselves and their social environment.
Resumo:
Record-breaking rainfall amounts and intensities were observed at several raingauges in central Europe during the first half of August 2002 (Fig. 1). They produced flash floods in small rivers in the Erz Mountains, the Bohemian Forest and in Lower Austria (see Fig. 2), followed by record-breaking floods of larger rivers fed from these areas. The Vltava submerged parts of the city of Prague on 13± 15 August, and subsequently the Elbe flooded parts of Dresden and further villages and towns located downstream. The gauge level of 9.40m measured at Dresden on 17 August 2002 is the highest level since 1275, exceeding the former maximum level of 8.77m recorded in 1845 (Grollmann and Simon 2002). Parts of the Danube catchment were also affected by severe flooding. There were 100 fatalities connected with the floods in central Europe, and the economic loss is estimated at 9 billion Euros for Germany (German government’s estimate), 3 billion Euros for Austria, and 2.5 billion Euros for the Czech Republic (estimates from Boyle 2002). The event thus replaced the European winter storm Lothar of December 1999 (Ulbrich et al. 2001) as the most expensive weather-related catastrophe in Europe in recent decades (see Cornford 2002). In this study, we give an overview of the exceptional rainfall experienced over wide areas on 12/13 August 2002, and the resulting floods. Further events during early August 2002, in particular the event on 6/7 August in Lower Austria, are briefly mentioned.
Resumo:
The nature and scale of pre-Columbian land use and the consequences of the 1492 “Columbian Encounter” (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions.
Resumo:
We present a well-dated, high-resolution, ~ 45 kyr lake sediment record reflecting regional temperature and precipitation change in the continental interior of the Southern Hemisphere (SH) tropics of South America. The study site is Laguna La Gaiba (LLG), a large lake (95 km2) hydrologically-linked to the Pantanal, an immense, seasonally-flooded basin and the world's largest tropical wetland (135,000 km2). Lake-level changes at LLG are therefore reflective of regional precipitation. We infer past fluctuations in precipitation at this site through changes in: i) pollen-inferred extent of flood-tolerant forest; ii) relative abundance of terra firme humid tropical forest versus seasonally-dry tropical forest pollen types; and iii) proportions of deep- versus shallow-water diatoms. A probabilistic model, based on plant family and genus climatic optima, was used to generate quantitative estimates of past temperature from the fossil pollen data. Our temperature reconstruction demonstrates rising temperature (by 4 °C) at 19.5 kyr BP, synchronous with the onset of deglacial warming in the central Andes, strengthening the evidence that climatic warming in the SH tropics preceded deglacial warming in the Northern Hemisphere (NH) by at least 5 kyr. We provide unequivocal evidence that the climate at LLG was markedly drier during the last glacial period (45.0–12.2 kyr BP) than during the Holocene, contrasting with SH tropical Andean and Atlantic records that demonstrate a strengthening of the South American summer monsoon during the global Last Glacial Maximum (~ 21 kyr BP), in tune with the ~ 20 kyr precession orbital cycle. Holocene climate conditions occurred as early as 12.8–12.2 kyr BP, when increased precipitation in the Pantanal catchment caused heightened flooding and rising lake levels in LLG. In contrast to this strong geographic variation in LGM precipitation across the continent, expansion of tropical dry forest between 10 and 3 kyr BP at LLG strengthens the body of evidence for widespread early–mid Holocene drought across tropical South America.
Resumo:
The majority of vegetation reconstructions from the Neotropics are derived from fossil pollen records extracted from lake sediments. However, the interpretation of these records is restricted by limited knowledge of the contemporary relationships between the vegetation and pollen rain of Neotropical ecosystems, especially for more open vegetation such as savannas. This research aims to improve the interpretation of these records by investigating the vegetation and modern pollen rain of different savanna ecosystems in Bolivia using vegetation inventories, artificial pollen traps and surface lake sediments. Two types of savanna were studied, upland savannas (cerrado), occurring on well drained soils, and seasonally-inundated savannas occurring on seasonally water-logged soils. Quantitative vegetation data are used to identify taxa that are floristically important in the different savanna types and to allow modern pollen/vegetation ratios to be calculated. Artificial pollen traps from the upland savanna site are dominated by Moraceae (35%), Poaceae (30%), Alchornea (6%) and Cecropia (4%). The two seasonally-inundated savanna sites are dominated by Moraceae (37%), Poaceae (20%), Alchornea (8%) and Cecropia (7%), and Moraceae (25%), Cyperaceae (22%), Poaceae (19%) and Cecropia (9%), respectively. The modern pollen rain of seasonally-inundated savannas from surface lake sediments is dominated by Cyperaceae (35%), Poaceae (33%), Moraceae (9%) and Asteraceae (5%). Upland and seasonally-flooded savannas were found to be only subtly distinct from each other palynologically. All sites have a high proportion of Moraceae pollen due to effective wind dispersal of this pollen type from areas of evergreen forest close to the study sites. Modern pollen/vegetation ratios show that many key woody plant taxa are absent/under-represented in the modern pollen rain (e.g., Caryocar and Tabebuia). The lower-than-expected percentages of Poaceae pollen, and the scarcity of savanna indicators, in the modern pollen rain of these ecosystems mean that savannas could potentially be overlooked in fossil pollen records without consideration of the full pollen spectrum available.
Resumo:
We used fossil pollen to investigate the response of the eastern Chiquitano seasonally-dry tropical forest (SDTF), lowland Bolivia, to high-amplitude climate change associated with glacial–interglacial cycles. Changes in the structure, composition and diversity of the past vegetation are compared with palaeoclimate data previously reconstructed from the same record, and these results shed light on the biogeographic history of today’s highly disjunct blocks of SDTF across South America. We demonstrate that lower glacial temperatures limited tropical forest in the Chiquitanía region, and suggest that SDTF was absent or restricted at latitudes below 17°S, the proposed location of the majority of the hypothesized ‘Pleistocene dry forest arc’ (PDFA). At 19500 yrs b.p., warming supported the establishment of a floristically-distinct SDTF, which showed little change throughout the glacial–Holocene transition, despite a shift to significantly wetter conditions beginning ca. 12500–12200 yrs b.p. Anadenanthera colubrina, a key SDTF taxon, arrived at 10000 yrs b.p., which coincides with the onset of drought associated with an extended dry season. Lasting until 3000 yrs b.p., Holocene drought caused a floristic shift to more drought-tolerant taxa and a reduction in α-diversity (shown by declining palynological richness), but closed-canopy forest was maintained throughout. In contrast to the PDFA, the modern distribution of SDTF most likely represents the greatest spatial coverage of these forests in southern South America since glacial times. We find that temperature is a key climatic control upon the distribution of lowland South American SDTF over glacial-interglacial timescales, and seasonality of rainfall exerts a strong control on their floristic composition.
Resumo:
Accurate differentiation between tropical forest and savannah ecosystems in the fossil pollen record is hampered by the combination of: i) poor taxonomic resolution in pollen identification, and ii) the high species diversity of many lowland tropical families, i.e. with many different growth forms living in numerous environmental settings. These barriers to interpreting the fossil record hinder our understanding of the past distributions of different Neotropical ecosystems and consequently cloud our knowledge of past climatic, biodiversity and carbon storage patterns. Modern pollen studies facilitate an improved understanding of how ecosystems are represented by the pollen their plants produce and therefore aid interpretation of fossil pollen records. To understand how to differentiate ecosystems palynologically, it is essential that a consistent sampling method is used across ecosystems. However, to date, modern pollen studies from tropical South America have employed a variety of methodologies (e.g. pollen traps, moss polsters, soil samples). In this paper, we present the first modern pollen study from the Neotropics to examine the modern pollen rain from moist evergreen tropical forest (METF), semi-deciduous dry tropical forest (SDTF) and wooded savannah (cerradão) using a consistent sampling methodology (pollen traps). Pollen rain was sampled annually in September for the years 1999–2001 from within permanent vegetation study plots in, or near, the Noel Kempff Mercado National Park (NKMNP), Bolivia. Comparison of the modern pollen rain within these plots with detailed floristic inventories allowed estimates of the relative pollen productivity and dispersal for individual taxa to be made (% pollen/% vegetation or ‘p/v’). The applicability of these data to interpreting fossil records from lake sediments was then explored by comparison with pollen assemblages obtained from five lake surface samples.
Resumo:
REDD (reduced emissions from deforestation and degradation) aims to slow carbon releases caused by forest disturbance by making payments conditional on forest quality over time. Like earlier policies to slow deforestation, REDD must change the behaviour of forest degrading actors. Broadly, it can be implemented with payments to forest users in exchange for improved forest management, thus creating incentives; through payments for enforcement, thus creating disincentives; or through addressing external drivers such as urban charcoal demand. In Tanzania, community-based forest management (CBFM), a form of participatory forest management, was chosen by the Tanzania Forest Conservation Group, a local NGO, as a model for implementing REDD pilot programmes. Payments are made to villages that have the rights to forest carbon. In exchange, the villages must demonstrably reduce deforestation at the village level. In this paper, using this pilot programme as a case study, combined with a review of the literature, we provide insights for REDD implementation in sub-Saharan Africa. We pay particular attention to leakage, monitoring and enforcement. We suggest that implementing REDD through CBFM-type structures can create appropriate incentives and behaviour change when the recipients of the REDD funds are also the key drivers of forest change. When external forces drive forest change, however, REDD through CBFM-type structures becomes an enforcement programme with local communities rather than government agencies being responsible for the enforcement. That structure imposes costs on local communities, whose local authority limits the ability to address leakage outside the particular REDD village.
Exploring socioeconomic impacts of forest based mitigation projects: Lessons from Brazil and Bolivia
Resumo:
This paper aims to contribute new insights globally and regionally on how carbon forest mitigation contributes to sustainable development in South America. Carbon finance has emerged as a potential policy option to tackling global climate change, degradation of forests, and social development in poor countries. This paper focuses on evaluating the socioeconomic impacts of a set of forest based mitigation pilot projects that emerged under the United Nations Framework Convention on Climate Change. The paper reviews research conducted in 2001–2002, drawing from empirical data from four pilot projects, derived from qualitative stakeholder interviews, and complemented by policy documents and literature. Of the four projects studied three are located in frontier areas, where there are considerable pressures for conversion of standing forest to agriculture. In this sense, forest mitigation projects have a substantial role to play in the region. Findings suggest however, that all four projects have experienced cumbersome implementation processes specifically, due to weak social objectives, poor communication, as well as time constraints. In three out of four cases, stakeholders highlighted limited local acceptance at the implementation stages. In the light of these findings, we discuss opportunities for implementation of future forest based mitigation projects in the land use sector.
Resumo:
Given the decision to include small-scale sinks projects implemented by low-income communities in the clean development mechanism of the Kyoto Protocol, the paper explores some of the basic governance conditions that such carbon forestry projects will have to meet if they are to be successfully put in practice. To date there are no validated small-scale sinks projects and investors have shown little interest in financing such projects, possibly to due to the risks and uncertainties associated with sinks projects. Some suggest however, that carbon has the potential to become a serious commodity on the world market, thus governance over ownership, rights and responsibilities merit discussion. Drawing on the interdisciplinary development, as well as from the literature on livelihoods and democratic decentralization in forestry, the paper explores how to adapt forest carbon projects to the realities encountered in the local context. It also highlights the importance of capitalizing on synergies with other rural development strategies, ensuring stakeholder participation by working with accountable, representative local organizations, and creating flexible and adaptive project designs.
Resumo:
The role of different sky conditions on diffuse PAR fraction (ϕ), air temperature (Ta), vapor pressure deficit (vpd) and GPP in a deciduous forest is investigated using eddy covariance observations of CO2 fluxes and radiometer and ceilometer observations of sky and PAR conditions on hourly and growing season timescales. Maximum GPP response occurred under moderate to high PAR and ϕ and low vpd. Light response models using a rectangular hyperbola showed a positive linear relation between ϕ and effective quantum efficiency (α = 0.023ϕ + 0.012, r2 = 0.994). Since PAR and ϕ are negatively correlated, there is a tradeoff between the greater use efficiency of diffuse light and lower vpd and the associated decrease in total PAR available for photosynthesis. To a lesser extent, light response was also modified by vpd and Ta. The net effect of these and their relation with sky conditions helped enhance light response under sky conditions that produced higher ϕ. Six sky conditions were classified from cloud frequency and ϕ data: optically thick clouds, optically thin clouds, mixed sky (partial clouds within hour), high, medium and low optical aerosol. The frequency and light responses of each sky condition for the growing season were used to predict the role of changing sky conditions on annual GPP. The net effect of increasing frequency of thick clouds is to decrease GPP, changing low aerosol conditions has negligible effect. Increases in the other sky conditions all lead to gains in GPP. Sky conditions that enhance intermediate levels of ϕ, such as thin or scattered clouds or higher aerosol concentrations from volcanic eruptions or anthropogenic emissions, will have a positive outcome on annual GPP, while an increase in cloud cover will have a negative impact. Due to the ϕ/PAR tradeoff and since GPP response to changes in individual sky conditions differ in sign and magnitude, the net response of ecosystem GPP to future sky conditions is non-linear and tends toward moderation of change.