899 resultados para Fit quantification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of the Hosmer-Lemeshow global goodness-of-fit statistic for logistic regression models was explored in a wide variety of conditions not previously fully investigated. Computer simulations, each consisting of 500 regression models, were run to assess the statistic in 23 different situations. The items which varied among the situations included the number of observations used in each regression, the number of covariates, the degree of dependence among the covariates, the combinations of continuous and discrete variables, and the generation of the values of the dependent variable for model fit or lack of fit.^ The study found that the $\rm\ C$g* statistic was adequate in tests of significance for most situations. However, when testing data which deviate from a logistic model, the statistic has low power to detect such deviation. Although grouping of the estimated probabilities into quantiles from 8 to 30 was studied, the deciles of risk approach was generally sufficient. Subdividing the estimated probabilities into more than 10 quantiles when there are many covariates in the model is not necessary, despite theoretical reasons which suggest otherwise. Because it does not follow a X$\sp2$ distribution, the statistic is not recommended for use in models containing only categorical variables with a limited number of covariate patterns.^ The statistic performed adequately when there were at least 10 observations per quantile. Large numbers of observations per quantile did not lead to incorrect conclusions that the model did not fit the data when it actually did. However, the statistic failed to detect lack of fit when it existed and should be supplemented with further tests for the influence of individual observations. Careful examination of the parameter estimates is also essential since the statistic did not perform as desired when there was moderate to severe collinearity among covariates.^ Two methods studied for handling tied values of the estimated probabilities made only a slight difference in conclusions about model fit. Neither method split observations with identical probabilities into different quantiles. Approaches which create equal size groups by separating ties should be avoided. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In search of a meaningful stress indicator for Fucus vesiculosus we found that the often used quantitative determination procedures for the polysaccharide laminarin (beta-1,3-glucan) result in different kind of problems, uncertainties and limitations. This chemical long-term storage form of carbon enables perennial brown algae in seasonally fluctuating ecosystems to uncouple growth from photosynthesis. Because of this high ecological relevance a reliable and precise method for determination and quantification of laminarin is needed. Therefore, a simple, cold water extraction method coupled to a new quantitative liquid chromatography-mass spectrometrical method (LC-MS) was developed. Laminarin was determined in nine out of twelve brown algal species, and its expected typical molar mass distribution of 2000-7000 Da was confirmed. Furthermore, laminarin consisted of a complex mixture of different chemical forms, since fifteen chemical laminarin species with distinct molecular weights were measured in nine species of brown algae. Laminarin concentrations in the algal tissues ranged from 0.03 to 0.86% dry weight (DW). The direct chemical characterization and quantification of laminarin by LC-MS represents a powerful method to verify the biochemical and ecological importance of laminarin for brown algae. Single individuals of Laminaria hyperborea, L. digitata, Saccharina latissima, F. serratus, F. vesiculosus, F. spiralis, Himanthalia elongata, Cystoseira tamariscifolia, Pelvetia canaliculata, Ascophyllum nodosum, Halidrys siliquosa and Dictyota dichotoma were collected in fall (18.11.2013) during spring low tide from the shore of Finavarra, Co. Clare, west coast of Ireland (53° 09' 25'' N, 09° 06' 58'' W). After sampling, the different algae were immediately transported to the lab, lyophilized and sent to the University of Rostock. Laminarin was extracted with cold ultrapure water from the algal samples. Before extraction they were ground to < 1 mm grain size with an analytical mill (Ika MF 10 Basic). The algal material (approx. 1.5 g DW) was extracted in ultrapure water (8 mL) on a shaker (250 rpm) for 5 h. After the addition of surplus ultrapure water (4 mL) and shaking manually, 1 mL of the sample was filter centrifuged (45 µm) at 14,000 rpm (Hettich Mikro 22 R). The slightly viscous supernatant was free of suspended material and converted into a microvial (300 µL) for further analysis. The extracts were analyzed using liquid chromatography-mass spectrometry (LC-MS) analysis (LTQ Velos Pro ion trap spectrometer with Accela HPLC, Thermo Scientific). Laminarin species were separated on a KinetexTM column (2.6 µm C18, 150 x 3 mm). The mobile phase was 90 % ultrapure water and 10 % acetonitrile, run isocratically at a flow rate of 0.2 mL min-1. MS was working in ESI negative ion mode in a mass range of 100 - 4000 amu. Glucose contents were determined after extraction using high-performance liquid chromatography (HPLC). Extracted samples were analyzed in an HPLC (SmartLine, Knauer GmbH) equipped with a SUPELCOGELTM Ca column (30 x 7,8 mm without preColumn) and RI-detector (S2300 PDA S2800). Water was used as eluent at a flow rate of 0.8 mL min-1 at 75 °C. Glucose was quantified by comparison of the retention time and peak area with standard solutions using ChromGate software. Mannitol was extracted from three subsamples of 10-20 mg powdered alga material (L. hyperborea, L. digitata, S. latissima, F. serratus, F. vesiculosus, F. spiralis, H. elongata, P. canaliculata, A. nodosum, H. siliquosa) and quantified, following the HPLC method described by Karsten et al. (1991). For analyzing carbon and nitrogen contents, dried algal material was ground to powder and three subsamples of 2 mg from each alga thalli were loaded and packed into tin cartridges (6×6×12 mm). The packages were combusted at 950 °C and the absolute contents of C and N were automatically quantified in an elemental analyzer (Elementar Vario EL III, Germany) using acetanilide as standard according to Verardo et al. (1990).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic fluctuations in global sea level during epochs of warm greenhouse climate have remained enigmatic, because absence or subordinate presence of polar ice during these periods precludes an explanation by glacio-eustatic forcing. An alternative concept suggests that the water-bearing potential of groundwater aquifers is equal to that of ice caps and that changes in the dynamic balance of aquifer charge versus discharge, as a function of the temperature-related intensity of the hydrological cycle, may have driven eustasy during warm climates. However, this idea has long been neglected for two reasons: 1) the large storage potential of subsurface aquifers was confused with the much smaller capacity of rivers and lakes and 2) empirical data were missing that document past variations in the hydrological cycle in relation to eustasy. In the present study we present the first empirical evidence for changes in precipitation, continental weathering intensity and evaporation that correlate with astronomically (long obliquity) forced sea-level cycles during the warmest period of the Cretaceous (Cenomanian-Turonian). We compare sequence-stratigraphic data with changes in the terrigenous mineral assemblage in a low-latitude marine sedimentary sequence from the equatorial humid belt at the South-Tethyan margin (Levant carbonate platform, Jordan), thereby avoiding uncertainties from land-ocean correlations. Our data indicate covariance between cycles in weathering and sea level: predominantly chemical weathering under wet climate conditions is reflected by dominance of weathering products (clays) in deposits that represent sea-level fall (aquifer charge > discharge). Conversely, preservation of weathering-sensitive minerals (feldspars, epidote and pyroxenes) in transgressive sediments reflects decreased continental weathering due to dryer climate (aquifer discharge > charge). Based on our results we suggest that aquifer-eustasy represents a viable alternative to glacio-eustasy as a driver of cyclic 3rd-order sea-level fluctuations during the middle Cretaceous greenhouse climate, and it may have been a pervasive process throughout Earth history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterozoan carbonates are typical for extratropical sedimentary systems. However, under mesotrophic to eutrophic conditions, heterozoan carbonates also form in tropical settings. Nevertheless, such heterozoan tropical sedimentary systems are rare in the modern world and therefore are only poorly understood to date. Here a carbonate depositional system is presented where nutrient-rich upwelling waters push onto a wide shelf. These waters warm up in the shelf, giving rise to the production and deposition of tropical heterozoan facies. The carbonate facies on this shelf are characterized by a mixture of tropical and cosmopolitan biogenic sedimentary grains. Study of facies and taxonomy are the key for identifying and characterizing tropical heterozoan carbonates and for distinguishing them from their coolwater counterparts, in particular in the past where the oceanography cannot be determined directly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments in Arctic sea ice are important for erosion and redistribution and consequently a factor for the sediment budget of the Arctic Ocean. The processes leading to the incorporation of sediments into the ice are not understood in detail yet. In the present study, experiments on the incorporation of sediments were therefore conducted in ice tanks of The Hamburg Ship Model Basin (HSVA) in winter 1996/1997, These experiments showed that on average 75 % of the artificial sea-ice sediments were located in the brine-channel system. The sediments were scavenged from the water column by frazil ice. Sediments functioning as a nucleus for the formation of frazil ice were less important for the incorporation. Filtration in grease ice during relatively calm hydrodynamic conditions was probably an effective process to enrich sediments in the ice. Wave fields did not play an important role for the incorporation of sediments into the artificial sea ice. During the expedition TRANSDRIFT III (TDIII, October 1995), different types of natural, newly-formed sea ice (grease ice, nilas and young ice) were sampled in the inner Laptev Sea at the time of freeze-up. The incorporation of sediments took place during calm meteorological conditions then. The characteristics of the clay mineral assemblages of these sedirnents served as references for sea-ice sediments which were sampled from first-year drift ice in the outer Laptev Sea and the adjacent Arctic Ocean during the POLARSTERN expedition ARK-XI/1 (July-September 1995). Based on the clay mineral assemblages, probable incorporation areas for the sedirnents in first-year drift ice could be statistically reconstructed in the inner Laptev Sea (eastern, central, and Western Laptev Sea) as well as in adjacent regions. Comparing the amounts of particulate organic carbon (POC) in sea-ice sediments and in surface sediments from the shelves of potential incorporation areas often reveals higher values in sea-ice sediments (TDIII: 3.6 %DM; ARK-XI/1: 2.3 %DM). This enrichment of POC is probably due to the incorporation process into the sea ice, as could be deducted from maceral analysis and Rock-Eval pyrolysis. Both methods were applied in the present study to particulate organic material (POM) from sea-ice sediments for the first time. It was shown that the POM of the sea-ice sediments from the Laptev Sea and the adjacent Arctic Ocean was dominated by reworked, strongly fragmented, allochthonous (terrigenous) material. This terrigenous component accounted for more than 75 % of all counted macerals. The autochthonous (marine) component was also strongly fragmented, and higher in the sediments from newly-formed sea ice (24 % of all counted macerals) as compared to first-year drift ice (17 % of all counted macerals). Average hydroge indices confirmed this pattern and were in the transition zone between kerogen types II and III (TDIII: 275 mg KW/g POC; ARK-XI/1: 200 mg KW/g POC). The sediment loads quantified in natural sea ice (TDIII: 33.6 mg/l, ARK-XI/1: 49.0 mg/l) indicated that sea-ice sediments are an important factor for the sediment budget in the Laptev Sea. In particular during the incorporation phase in autumn and early winter, about 12 % of the sediment load imported annually by rivers into the Laptev Sea can be incorporated into sea ice and redistributed during calm meteorological conditions. Single entrainment events can incorporate about 35 % of the river input into the sea ice (ca. 9 x 10**6 t) and export it via the Transpolar Drift from the Eurasian shelf to the Fram Strait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to be tightly coupled across PFTs in sub-Arctic tundra vegetation, which simplifies up-scaling by allowing quantification of the main drivers of P from remotely sensed LT. Our objective was to test the LT-NT relationship across multiple Arctic latitudes and to assess LT as a predictor of P for the pan-Arctic. Including PFT-specific parameters in models of LT-NT coupling provided only incremental improvements in model fit, but significant improvements were gained from including site-specific parameters. The degree of curvature in the LT-NT relationship, controlled by a fitted canopy nitrogen extinction co-efficient, was negatively related to average levels of diffuse radiation at a site. This is consistent with theoretical predictions of more uniform vertical canopy N distributions under diffuse light conditions. Higher latitude sites had higher average leaf N content by mass (NM), and we show for the first time that LT-NT coupling is achieved across latitudes via canopy-scale trade-offs between NM and leaf mass per unit leaf area (LM). Site-specific parameters provided small but significant improvements in models of P based on LT and moss cover. Our results suggest that differences in LT-NT coupling between sites could be used to improve pan-Arctic models of P and we provide unique evidence that prevailing radiation conditions can significantly affect N allocation over regional scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although sulfur is an essential element for marine primary production and critical for climate processes, little is known about the oceanic pool of non-volatile dissolved organic sulfur (DOS). We present a basin-scale distribution of solid phase extractable DOS in the East Atlantic Ocean and the Atlantic sector of the Southern Ocean. While molar DOS versus dissolved organic nitrogen (DON) ratios of 0.11 ± 0.024 in Atlantic surface water resembled phytoplankton stoichiometry (S/N ~ 0.08), increasing dissolved organic carbon (DOC) versus DOS ratios and decreasing methionine-S yield demonstrated selective DOS removal and active involvement in marine biogeochemical cycles. Based on stoichiometric estimates, the minimum global inventory of marine DOS is 6.7 Pg S, exceeding all other marine organic sulfur reservoirs by an order of magnitude.