967 resultados para Finite-strain solid–shell
Resumo:
We consider a discrete time queue with finite capacity and i.i.d. and Markov modulated arrivals, Efficient algorithms are developed to calculate the moments and the distributions of the first time to overflow and the regeneration length, Results are extended to the multiserver queue. Some illustrative numerical examples are provided.
Resumo:
We consider a system comprising a finite number of nodes, with infinite packet buffers, that use unslotted ALOHA with Code Division Multiple Access (CDMA) to share a channel for transmitting packetised data. We propose a simple model for packet transmission and retransmission at each node, and show that saturation throughput in this model yields a sufficient condition for the stability of the packet buffers; we interpret this as the capacity of the access method. We calculate and compare the capacities of CDMA-ALOHA (with and without code sharing) and TDMA-ALOHA; we also consider carrier sensing and collision detection versions of these protocols. In each case, saturation throughput can be obtained via analysis pf a continuous time Markov chain. Our results show how saturation throughput degrades with code-sharing. Finally, we also present some simulation results for mean packet delay. Our work is motivated by optical CDMA in which "chips" can be optically generated, and hence the achievable chip rate can exceed the achievable TDMA bit rate which is limited by electronics. Code sharing may be useful in the optical CDMA context as it reduces the number of optical correlators at the receivers. Our throughput results help to quantify by how much the CDMA chip rate should exceed the TDMA bit rate so that CDMA-ALOHA yields better capacity than TDMA-ALOHA.
Resumo:
The subsurface microhardness mapping technique of Chaudhri was utilized to determine the shape, size and distribution of plastic strain underneath conical indenters of varying semi-apex angles, alpha (55 degrees, 65 degrees and 75 degrees). Results show that the elastic-plastic boundary under the indenters is elliptical in nature, contradicting the expanding cavity model, and the ellipticity increases with alpha. The maximum plastic strain immediately under the indenter was found to decrease with increasing alpha. Complementary finite-element analysis was conducted to examine the ability of simulations to capture the experimental observations. A comparison of computational and experimental results indicates that the plastic strain distributions as well as the maximum strains immediately beneath the indenter do not match, suggesting that simulation of sharp indentation requires further detailed studies for complete comprehension. Representative strains, epsilon(r), evaluated as the volume-average strains within the elastic-plastic boundary, decrease with increasing alpha and are in agreement with those estimated by using the dimensional analysis. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report results of statistical and dynamic analysis of the serrated stress-time curves obtained from compressive constant strain-rate tests on two metallic glass samples with different ductility levels in an effort to extract hidden information in the seemingly irregular serrations. Two distinct types of dynamics are detected in these two alloy samples. The stress-strain curve corresponding to the less ductile Zr65Cu15Ni10Al10 alloy is shown to exhibit a finite correlation dimension and a positive Lyapunov exponent, suggesting that the underlying dynamics is chaotic. In contrast, for the more ductile Cu47.5Zr47.5Al5 alloy, the distributions of stress drop magnitudes and their time durations obey a power-law scaling reminiscent of a self-organized critical state. The exponents also satisfy the scaling relation compatible with self-organized criticality. Possible physical mechanisms contributing to the two distinct dynamic regimes are discussed by drawing on the analogy with the serrated yielding of crystalline samples. The analysis, together with some physical reasoning, suggests that plasticity in the less ductile sample can be attributed to stick-slip of a single shear band, while that of the more ductile sample could be attributed to the simultaneous nucleation of a large number of shear bands and their mutual interactions. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents nonlinear finite element analysis of adhesively bonded joints considering the elastoviscoplastic constitutive model of the adhesive material and the finite rotation of the joint. Though the adherends have been assumed to be linearly elastic, the yielding of the adhesive is represented by a pressure sensitive modified von Mises yield function. The stress-strain relation of the adhesive is represented by the Ramberg-Osgood relation. Geometric nonlinearity due to finite rotation in the joint is accounted for using the Green-Lagrange strain tensor and the second Piola-Kirchhoff stress tensor in a total Lagrangian formulation. Critical time steps have been calculated based on the eigenvalues of the transition matrices of the viscoplastic model of the adhesive. Stability of the viscoplastic solution and time dependent behaviour of the joints are examined. A parametric study has been carried out with particular reference to peel and shear stress along the interface. Critical zones for failure of joints have been identified. The study is of significance in the design of lap joints as well as on the characterization of adhesive strength. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, an overview of some recent computational studies by the authors on ductile crack initiation under mode I, dynamic loading is presented. In these studies, a large deformation finite element procedure is employed along with the viscoplastic version of the Gurson constitutive model that accounts for the micro-mechanical processes of void nucleation, growth and coalescence. A three-point bend fracture specimen subjected to impact, and a single edge notched specimen loaded by a tensile stress pulse are analysed. Several loading rates are simulated by varying the impact speed or the rise time and magnitude of the stress pulse. A simple model involving a semi-circular notch with a pre-nucleated circular hole situated ahead of it is considered. The growth of the hole and its interaction with the notch tip, which leads to plastic strain and porosity localization in the ligament connecting them, is simulated. The role of strain-rate dependence on ductile crack initiation at high loading rates, and the specimen geometry effect on the variation of dynamic fracture toughness with loading rate are Investigated.
Resumo:
Mulberry fiber (Bivoltine) and non-mulberry fiber (Tassar) were subjected to stress-strain studies and the corresponding samples were examined using wide angle X-ray scattering studies. Here we have two different characteristic stress-strain curves and this has been correlated with changes in crystallite shape ellipsoids in all the fibers. Exclusive crystal structure studies of Tassar fibers show interesting feature of transformation from antiparallel chains to parallel chains.
Resumo:
The enthalpy method is primarily developed for studying phase change in a multicomponent material, characterized by a continuous liquid volume fraction (phi(1)) vs temperature (T) relationship. Using the Galerkin finite element method we obtain solutions to the enthalpy formulation for phase change in 1D slabs of pure material, by assuming a superficial phase change region (linear (phi(1) vs T) around the discontinuity at the melting point. Errors between the computed and analytical solutions are evaluated for the fluxes at, and positions of, the freezing front, for different widths of the superficial phase change region and spatial discretizations with linear and quadratic basis functions. For Stefan number (St) varying between 0.1 and 10 the method is relatively insensitive to spatial discretization and widths of the superficial phase change region. Greater sensitivity is observed at St = 0.01, where the variation in the enthalpy is large. In general the width of the superficial phase change region should span at least 2-3 Gauss quadrature points for the enthalpy to be computed accurately. The method is applied to study conventional melting of slabs of frozen brine and ice. Regardless of the forms for the phi(1) vs T relationships, the thawing times were found to scale as the square of the slab thickness. The ability of the method to efficiently capture multiple thawing fronts which may originate at any spatial location within the sample, is illustrated with the microwave thawing of slabs and 2D cylinders. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The objectives of this paper are to examine the loss of crack tip constraint in dynamically loaded fracture specimens and to assess whether it can lead to enhancement in the fracture toughness at high loading rates which has been observed in several experimental studies. To this end, 2-D plane strain finite element analyses of single edge notched (tension) specimen and three point bend specimen subjected to time varying loads are performed. The material is assumed to obey the small strain J(2) flow theory of plasticity with rate independent behaviour. The results demonstrate that a valid J-Q field exists under dynamic loading irrespective of the crack length and specimen geometry. Further, the constraint parameter Q becomes strongly negative at high loading rates, particularly in deeply cracked specimens. The variation of dynamic fracture toughness K-dc with stress intensity rate K for cleavage cracking is predicted using a simple critical stress criterion. It is found that inertia-driven constraint loss can substantially enhance K-dc for (K) over dot > 10(5) MPa rootm/s.
Resumo:
This paper presents a new approach by making use of a hybrid method of using the displacement discontinuity element method and direct boundary element method to model concrete cracking by incorporating fictitious crack model. Fracture mechanics approach is followed using the Hillerborg's fictitious crack model. A boundary element based substructure method and a hybrid technique of using displacement discontinuity element method and direct boundary element method are compared in this paper. In order to represent the process zone ahead of the crack, closing forces are assumed to act in such a way that they obey a linear normal stress-crack opening displacement law. Plain concrete beams with and without initial crack under three-point loading were analyzed by both the methods. The numerical results obtained were shown to agree well with the results from existing finite element method. The model is capable of reproducing the whole range of load-deflection response including strain-softening and snap-back behavior as illustrated in the numerical examples. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The deformation behavior of an FeAl alloy processed by hot extrusion of water atomized powder has been investigated. Compression tests are performed in the temperature range 1073–1423 K and in the strain rate range 0.001–100 s−1 up to a true plastic strain of 0.5. The flow stress has been found to be strongly dependent on temperature as well as strain rate. The stress exponent in the power law rate equation is estimated to be in the range 7.0–4.0, decreasing with temperature. The activation energy for plastic flow in the range 1073–1373 K varies from 430 kJ mol−1 at low stresses to 340 kJ mol−1 at high stresses. However, it is fairly independent of strain rate and strain. The activation area has similarly shown a stress dependence and lies in the range 160–45b2. At 1423 K and at strain rates lower than 0.1 s−1 a strain rate sensitivity of 0.3 is observed with an associated activation energy of 375 kJ mol−1. The plastic flow in the entire range of temperature and strain rate investigated appears to be controlled by a diffusion mechanism. The results have revealed that it is possible to process the alloy by superplastic forming in the range 1373–1423 K at strain rates lower than 0.1 s−1.
Resumo:
In this paper, a finite-element model is developed in which the nonlinear soil behavior is represented by a hyperbolic relation for static load condition and modified hyperbolic relation, which includes both degradation and gap for a cyclic load condition. Although batter piles are subjected to lateral load, the soil resistance is also governed by axial load, which is incorporated by considering the P-Δ moment and geometric stiffness matrix. By adopting the developed numerical model, static and cyclic load analyses are performed adopting an incremental-iterative procedure where the pile is idealized as beam elements and the soil as elastoplastic spring elements. The proposed numerical model is validated with published laboratory and field pile test results under both static and cyclic load conditions. This paper highlights the importance of the degradation factor and its influence on the soil resistance-displacement (p-y) curve, number of cycles of loading, and cyclic load response.
Resumo:
Effects of strain rate (10(-4)-10(-2) s(-1)) on tensile and compressive strength of the Al-Si alloy and Al-Si/graphite composite are investigated. The strain hardening exponent value of the composite was more than that of the alloy for all strain rates during tensile and compressive loading. The yield stress of the composite was more than that of the ultimate tensile strength of the alloy for all strain rates. Tensile and compressive properties of the alloy and composite are dependent on strain rates. The negative strain rate sensitivity was observed for the composite and alloy at lower strain rates during the compression and tension loading respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A new beam element is developed to study the thermoelastic behavior of functionally graded beam structures. The element is based on the first-order shear deformation theory and it accounts for varying elastic and thermal properties along its thickness. The exact solution of static part of the governing differential equations is used to construct interpolating polynomials for the element formulation. Consequently, the stiffness matrix has super-convergent property and the element is free of shear locking. Both exponential and power-law variations of material property distribution are used to examine different stress variations. Static, free vibration and wave propagation problems are considered to highlight the behavioral difference of functionally graded material beam with pure metal or pure ceramic beams. (C) 2003 Elsevier Science Ltd. All rights reserved.