794 resultados para Finite habitat
Resumo:
The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 31) composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The physical and environmental factors presented by each habitat and the rhythm of behavior patterns strongly influence the ecology and behavior of the all living beings. At same time this factors may provide clues about the structure of a population and its ecological balance. The organizational structure, ecology and behavior of a species appraised in a region if we know be in balance when compared to the same type of appraisal made in a degraded area can provide a clear view of how the anthropogenic influences acted on these species and what steps can be taken in order to mitigate the effects and keep the population. The region where this study was conducted is, like most areas of port, subject to intense physical and environmental degradation. With the emerging interest of change in the quality of these environments also by the companies themselves that use the port services, the proposed study aimed to characterize the use of habitat, the distribution of behavioral activities carried out throughout the day and influence of geomorphology of the bed, depth and variation of tide on the expression of the behavior of Sotalia guianensis in the port of Maceio - Alagoas. From this information will be possible establish parameters for comparison with other populations of S. guianensis and establish conservation measures for the population occurring in the port of Maceio - AL, serving also as a basis for conservation actions future performed in other port regions
Resumo:
To clarify the functional mechanisms of habitat use is necessary to analyze it in conjunction with the conduct performed by animals. The occurrence, distribution and use of space are characteristic of a species resulting from habitat selection that is in search of conditions favorable to its survival. One can relate the physical and biological factors of the environment with the ecological characteristics of the species, since these factors act by regulating the ecological success of organisms, and from there you can get important information about the habitat use and behavior of individuals. This study aimed to characterize the use of habitat and diurnal activity expressed by the Guiana dolphin, Sotalia guianensis in an estuarine area of Sergipe state, Brazil, analyzing the influence of tide and time days on the occurrence of animals and behavior s state, and group s size and composition in this cetacean species. From March 2009 to February 2010, focal groups observations of dolphins were made from fixed - point and records snapshots of data taken every 5 min. in the interval from 6 a.m to 6 p.m, in alternating shifts. The results showed that the constant presence of animals in the area of the Sergipe River estuary indicates that this is an important area of occurrence of S. guianensis, which use the region mainly in the morning, at low tide and as a feeding. As in other regions of northeastern Brazil, small groups formed 2-12 individuals were most common, with adults and immatures. The high frequency of immature animals may indicate that this area of the estuary is used as brood area and parental care of pups and young animals, since the immature animals were very associated with adults and monitoring the activities of foraging / feeding may be related to a form of learning or training of such behavior
Resumo:
The dispersion of pollutants in the environment is an issue of great interest as it directly affects air quality, mainly in large cities. Experimental and numerical tools have been used to predict the behavior of pollutant species dispersion in the atmosphere. A software has been developed based on the control-volume based on the finite element method in order to obtain two-dimensional simulations of Navier-Stokes equations and heat or mass transportation in regions with obstacles, varying position of the pollutant source. Numeric results of some applications were obtained and, whenever possible, compared with literature results showing satisfactory accordance. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This work presents a numerical study of the tri-dimensional convection-diffusion equation by the control-volume-based on finite-element method using quadratic hexahedral elements. Considering that the equation governing this problem in its main variable may represent several properties, including temperature, turbulent kinetic energy, viscous dissipation rate of the turbulent kinetic energy, specific dissipation rate of the turbulent kinetic energy, or even the concentration of a contaminant in a given medium, among others, the wide applicability of this problem is thus evidenced. Three cases of temperature distributions will be studied specifically in this work, in addition to one case of pollutant dispersion upon analysis of the concentration of a contaminant in a fixed flow point. Some comparisons will be carried out against works found in the open literature, while others will be done according to each phenomenon characteristics.
Resumo:
This study aimed to develop a plate to treat fractures of the mandibular body in dogs and to validate the project using finite elements and biomechanical essays. Mandible prototypes were produced with 10 oblique ventrorostral fractures (favorable) and 10 oblique ventrocaudal fractures (unfavorable). Three groups were established for each fracture type. Osteosynthesis with a pure titanium plate of double-arch geometry and blocked monocortical screws offree angulanon were used. The mechanical resistance of the prototype with unfavorable fracture was lower than that of the fcworable fracture. In both fractures, the deflection increased and the relative stiffness decreased proportionally to the diminishing screw number The finite element analysis validated this plate study, since the maximum tension concentration observed on the plate was lower than the resistance limit tension admitted by the titanium. In conclusion, the double-arch geometry plate fixed with blocked monocortical screws has sufficient resistance to stabilize oblique,fractures, without compromising mandibular dental or neurovascular structures. J Vet Dent 24 (7); 212 - 221, 2010
Resumo:
Purpose: The aim of this study was to assess the influence of cusp inclination on stress distribution in implant-supported prostheses by 3D finite element method.Materials and Methods: Three-dimensional models were created to simulate a mandibular bone section with an implant (3.75 mm diameter x 10 mm length) and crown by means of a 3D scanner and 3D CAD software. A screw-retained single crown was simulated using three cusp inclinations (10 degrees, 20 degrees, 30 degrees). The 3D models (model 10d, model 20d, and model 30d) were transferred to the finite element program NeiNastran 9.0 to generate a mesh and perform the stress analysis. An oblique load of 200 N was applied on the internal vestibular face of the metal ceramic crown.Results: The results were visualized by means of von Mises stress maps. Maximum stress concentration was located at the point of application. The implant showed higher stress values in model 30d (160.68 MPa). Cortical bone showed higher stress values in model 10d (28.23 MPa).Conclusion: Stresses on the implant and implant/abutment interface increased with increasing cusp inclination, and stresses on the cortical bone decreased with increasing cusp inclination.
Resumo:
The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and pen-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the Solid Works 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0 degrees), oblique (45 degrees), and lateral (90) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the pen-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).
Resumo:
The aim of this study was to evaluate the effect of unilateral angular misfit of 100 Km on stress distribution of implant-supported single crowns with ceramic veneering and gold framework by three-dimensional finite element analysis. Two three-dimensional models representing a maxillary section of premolar region were constructed: group 1 (control)-crown completely adapted to the implant and group 2-crown with unilateral angular misfit of 100 Km. A vertical force of 100 N was applied on 2 centric points of the crown. The von Mises stress was used as an analysis criterion. The stress values and distribution in the main maps (204.4 MPa for group 1 and 205.0 MPa for group 2) and in the other structures (aesthetic veneering, framework, retention screw, implant, and bone tissue) were similar for both groups. The highest stress values were observed between the first and second threads of the retention screw. Considering the bone tissue, the highest stress values were exhibited in the peri-implant cortical bone. The unilateral angular misfit of 100 Km did not influence the stress distribution on the implant-supported prosthesis under static loading.
Resumo:
This study aimed to compare the influence of single-standing or connected implants on stress distribution in bone of mandibular overdentures by means of two-dimensional finite element analysis. Two finite element models were designed using software (ANSYS) for 2 situations: bar-clip (BC) group-model of an edentulous mandible supporting an overdenture over 2 connected implants with BC system, and o'ring (OR) group-model of an edentulous mandible supporting an overdenture over 2 single-standing implants with OR abutments. Axial loads (100 N) were applied on either central (L1) or lateral (L2) regions of the models. Stress distribution was concentrated mostly in the cortical bone surrounding the implants. When comparing the groups, BC (L1, 52.0 MPa and L2, 74.2 MPa) showed lower first principal stress values on supporting tissue than OR (L1, 78.4 MPa and L2, 76.7 MPa). Connected implants with BC attachment were more favorable on stress distribution over peri-implant-supporting tissue for both loading conditions.
Resumo:
The misfit between prostheses and implants is a clinical reality, but the level that can be accepted without causing mechanical or biologic problem is not well defined. This study investigates the effect of different levels of unilateral angular misfit prostheses in the prosthesis/implant/retaining screw system and in the surrounding bone using finite element analysis. Four models of a two-dimensional finite element were constructed: group I (control), prosthesis that fit the implant; groups 2 to 4, prostheses with unilateral angular misfit of 50, 100, and 200 mu m, respectively. A load of 133 N was applied with a 30-degree angulation and off-axis at 2 mm from the long axis of the implant at the opposite direction of misfit on the models. Taking into account the increase of the angular misfit, the stress maps showed a gradual increase of prosthesis stress and uniform stress in the implant and trabecular bone. Concerning the displacement, an inclination of the system due to loading and misfit was observed. The decrease of the unilateral contact between prosthesis and implant leads to the displacement of the entire system, and distribution and magnitude alterations of the stress also occurred.
Resumo:
Purpose: The objective of this study was to evaluate, using three-dimensional finite element analysis (3D FEA), the stress distribution in peri-implant bone tissue, implants, and prosthetic components of implant-supported single crowns with the use of the platform-switching concept. Materials and Methods: Three 3D finite element models were created to replicate an external-hexagonal implant system with peri-implant bone tissue in which three different implant-abutment configurations were represented. In the regular platform (RP) group, a regular 4.1-mm-diameter abutment (UCLA) was connected to regular 4.1-mm-diameter implant. The platform-switching (PS) group was simulated by the connection of a wide implant (5.0 mm diameter) to a regular 4.1-mm-diameter UCLA abutment. In the wide-platform (WP) group, a 5.0-mm-diameter UCLA abutment was connected to a 5.0-mm-diameter implant. An occlusal load of 100 N was applied either axially or obliquely on the models using ANSYS software. Results: Both the increase in implant diameter and the use of platform switching played roles in stress reduction. The PS group presented lower stress values than the RP and WP groups for bone and implant. In the peri-implant area, cortical bone exhibited a higher stress concentration than the trabecular bone in all models and both loading situations. Under oblique loading, higher intensity and greater distribution of stress were observed than under axial loading. Platform switching reduced von Mises (17.5% and 9.3% for axial and oblique loads, respectively), minimum (compressive) (19.4% for axial load and 21.9% for oblique load), and maximum (tensile) principal stress values (46.6% for axial load and 26.7% for oblique load) in the peri-implant bone tissue. Conclusion: Platform switching led to improved biomechanical stress distribution in peri-implant bone tissue. Oblique loads resulted in higher stress concentrations than axial loads for all models. Wide-diameter implants had a large influence in reducing stress values in the implant system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:482-491
Resumo:
This finite element analysis compared stress distribution on complete dentures and implant-retained overdentures with different attachment systems. Four models of edentulous mandible were constructed: group A (control), complete denture; group B, overdenture retained by 2 splinted implants with bar-clip system; group C, overdenture retained by 2 unsplinted implants with o'ring system; and group D, overdenture retained by 2 splinted implants with bar-clip and 2 distally placed o'ring system. Evaluation was performed on Ansys software, with 100-N vertical load applied on central incisive teeth. The lowest maximum general stress value (in megapascal) was observed in group A (64.305) followed by groups C (119.006), D (258.650), and B (349.873). The same trend occurred it) supporting tissues with the highest stress value for cortical bone. Unsplinted implants associated with the o'ring attachment system showed the lowest maximum stress values among all overdenture groups. Furthermore, o'ring system also improved stress distribution when associated with bar-clip system.